2 research outputs found

    Impact of Enzymatic and Microbial Bioprocessing on Protein Modification and Nutritional Properties of Wheat Bran

    No full text
    Besides providing dietary fiber, wheat bran is a recognized source of protein and is considered a very valuable substitute for other protein-rich sources in the food and feed industry. Nonetheless, several factors affect protein bioavailability, including bran’s layered structure. This study showed the influence on the release and protein modification of wheat bran of different bioprocessing methods involving the activation of endogenous enzymes of bran, the addition of an enzyme mixture having carbohydrase activity, and microbial fermentation. Bioprocessing in acidic conditions significantly enhanced the solubilization of protein from wheat bran, reaching the highest value in the treatment where the sole endogenous protease activity was activated. Bioprocessing through controlled fermentation allowed a more intense proteolysis and strongly impacted the in vitro digestibility of proteins. The combined use of starter cultures and cell-wall-degrading enzymes was characterized by the highest increase of phytase activity and total phenols

    Effect of Bioprocessing on the <i>In Vitro</i> Colonic Microbial Metabolism of Phenolic Acids from Rye Bran Fortified Breads

    No full text
    Cereal bran is an important source of dietary fiber and bioactive compounds, such as phenolic acids. We aimed to study the phenolic acid metabolism of native and bioprocessed rye bran fortified refined wheat bread and to elucidate the microbial metabolic route of phenolic acids. After incubation in an <i>in vitro</i> colon model, the metabolites were analyzed using two different methods applying mass spectrometry. While phenolic acids were released more extensively from the bioprocessed bran bread and ferulic acid had consistently higher concentrations in the bread type during fermentation, there were only minor differences in the appearance of microbial metabolites, including the diminished levels of certain phenylacetic acids in the bioprocessed bran. This may be due to rye matrix properties, saturation of ferulic acid metabolism, or a rapid formation of intermediary metabolites left undetected. In addition, we provide expansion to the known metabolic pathways of phenolic acids
    corecore