26 research outputs found
Indices of Upper Atmospheric Disturbance Phenomena in Auroral Zone
The earlier orbits and ephemerides for the Soviet satellites were not sufficiently
accurate to be very useful in making observations in Alaska. Extrapolations
from our own observations gave better predictions. This merely pointed out the fact
that rough observations of meridian transits at high latitudes will give better values
of the inclination of the orbit than precision observations at low latitudes. Hence,
it was decided to observe visually the meridian transits estimating the altitude by
noting the position with respect to the stars or using crude alidade measurements.
The times of the earlier observations were observed on a watch or clock and the clock
correction obtained from WWV. Later the times were determined with the aid of stop
watches, taking time intervals from WWV signals.
This rather meager program of optical observations of the Soviet satellites was
undertaken to give supplementary data for use of the radio observations, and particularly
to assist in the prediction of position of the satellite so that the 61-foot
radar of Stanford Research Institute could be set accurately enough to observe it
(the beam width at the half-power points is about 3°).
This report contains primarily the visual observations made at the Geophysical
Institute by various members of the staff, and a series of observations by Olaf
Halverson at Nome, Alaska. In addition there is a short discussion of the geometry
of the trajectory, the illumination of a circumpolar satellite, and a note on the
evaluation of Brouwer's moment factors.IGY Project No. I.14
NSF Grant No. Y/l.14/1771. INTRODUCTION / C. T. Elvey and M. Sugiura -- KEY TO GRAPH
DISTURBANCE INDICES -- 2. HOURLY RADAR INDICES OF AURORAL ACTIVITY / R. S. Leonard -- 3. HOURLY INDICES OF GEOELECTRIC AND MAGNETIC ACTIVITY
/ V. P. Hessler --
4. HOURLY IONOSPHERIC ABSORPTION / H. Leinbach --
5. HOURLY PHOTOMETRIC INDICES OF AURORAL ACTIVITY / W. Murcray --
6. HOURLY SPECTROSCOPIC INDICES OF AURORAL ACTIVITY
/ G. J. Romick --
7. AURORAL INDICES USING THE ALL-SKY CAMERA FILM / G. H. StanleyYe
Description of the All-Sky camera, its Method of Operation; An Instrument (Ascagraph) for Measuring the Film
The earlier orbits and ephemerides for the Soviet satellites were not sufficiently
accurate to be very useful in making observations in Alaska. Extrapolations
from our own observations gave better predictions. This merely pointed out the fact
that rough observations of meridian transits at high latitudes will give better values
of the inclination of the orbit than precision observations at low latitudes. Hence,
it was decided to observe visually the meridian transits estimating the altitude by
noting the position with respect to the stars or using crude alidade measurements.
The times of the earlier observations were observed on a watch or clock and the clock
correction obtained from WWV. Later the times were determined with the aid of stop
watches, taking time intervals from WWV signals.
This rather meager program of optical observations of the Soviet satellites was
undertaken to give supplementary data for use of the radio observations, and particularly
to assist in the prediction of position of the satellite so that the 61-foot
radar of Stanford Research Institute could be set accurately enough to observe it
(the beam width at the half-power points is about 3°).
This report contains primarily the visual observations made at the Geophysical
Institute by various members of the staff, and a series of observations by Olaf
Halverson at Nome, Alaska. In addition there is a short discussion of the geometry
of the trajectory, the illumination of a circumpolar satellite, and a note on the
evaluation of Brouwer's moment factors.IGY Project Number 1.1 ; NSF Grant Number Y/1.1/44LIST OF FIGURES AND ILLUSTRATIONS -- I Introduction -- II Description of the All-Sky Camera -- III Installation and Operation -- IV Development of the Film , Inspection, and Preliminary Assessment -- V Preparation of Synoptic Maps -- VI Auroral Plotter (Ascagraph) for Reduction of All-Sky Camera PhotographsYe
Implementing new care models: learning from the Greater Manchester demonstrator pilot experience
Background: Current health policy focuses on improving accessibility, increasing integration and shifting resources from hospitals to community and primary care. Initiatives aimed at achieving these policy aims have supported the implementation of various ‘new models of care’, including general practice offering ‘additional availability’ appointments during evenings and at weekends. In Greater Manchester, six ‘demonstrator sites’ were funded: four sites delivered additional availability appointments, other services included case management and rapid response. The aim of this paper is to explore the factors influencing the implementation of services within a programme designed to improve access to primary care. The paper consists of a qualitative process evaluation undertaken within provider organisations, including general practices, hospitals and care homes. Methods: Semi-structured interviews, with the data subjected to thematic analysis. Results: Ninety-one people participated in interviews. Six key factors were identified as important for the establishment and running of the demonstrators: information technology; information governance; workforce and organisational development; communications and engagement; supporting infrastructure; federations and alliances. These factors brought to light challenges in the attempt to provide new or modify existing services. Underpinning all factors was the issue of trust; there was consensus amongst our participants that trusting relationships, particularly between general practices, were vital for collaboration. It was also crucial that general practices trusted in the integrity of anyone external who was to work with the practice, particularly if they were to access data on the practice computer system. A dialogical approach was required, which enabled staff to see themselves as active rather than passive participants. Conclusions: The research highlights various challenges presented by the context within which extended access is implemented. Trust was the fundamental underlying issue; there was consensus amongst participants that trusting relationships were vital for effective collaboration in primary care
Interferometric Observations of Rapidly Rotating Stars
Optical interferometry provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Through direct observation of
rotationally distorted photospheres at sub-milliarcsecond scales, we are now
able to characterize latitude dependencies of stellar radius, temperature
structure, and even energy transport. These detailed new views of stars are
leading to revised thinking in a broad array of associated topics, such as
spectroscopy, stellar evolution, and exoplanet detection. As newly advanced
techniques and instrumentation mature, this topic in astronomy is poised to
greatly expand in depth and influence.Comment: Accepted for publication in A&AR
The spectrum of comet Cunningham, 1940C.
Slit spectrograms of Comet Cunningham secured at the McDonald Observatory reveal well-resolved ultraviolet bands due to OH and NH; only the lines of low rotational quantum number are observed, as in the case of CH. The abundances of OH and NH molecules seem to be of the same order as that of CN. Each branch of the violet bands of CN has two maxima, one corresponding to a rotational distribution for T 400° K and one corresponding to T 50° K. The tail bands of CN are absent. The authors discuss the variation with heliocentric distance of the relative intensities of the vibrational transitions. The rotational intensity distribution and the extension of the different bands in the head have been investigated. The cometary bands of CH belonging to the two electronic transitions, A2∆ → x2∏ (near λ 43oo) and B2∑- → x2∏ (near λ 3900), are described. The bands observed between λ 4000 and λ 4130 are discussed but remain unidentified