2 research outputs found

    Raster-Mode Continuous-Flow Liquid Microjunction Mass Spectrometry Imaging of Proteins in Thin Tissue Sections

    Get PDF
    Mass spectrometry imaging by use of continuous-flow liquid microjunction sampling at discrete locations (array mode) has previously been demonstrated. In this Letter, we demonstrate continuous-flow liquid microjunction mass spectrometry imaging of proteins from thin tissue sections in raster mode and discuss advantages (a 10-fold reduction in analysis time) and challenges (suitable solvent systems, data interpretation) of the approach. Visualization of data is nontrivial, requiring correlation of solvent-flow, mass spectral data acquisition rate, data quality, and liquid microjunction sampling area. The latter is particularly important for determining optimum pixel size. The minimum achievable pixel size is related to the scan time of the instrument used. Here we show a minimum achievable pixel size of 50 μm (<i>x</i>-dimension) when using an Orbitrap Elite; however a pixel size of 600 μm is recommended in order to minimize the effects of oversampling on image accuracy

    In Vitro Liquid Extraction Surface Analysis Mass Spectrometry (ivLESA-MS) for Direct Metabolic Analysis of Adherent Cells in Culture

    No full text
    Conventional metabolomic methods include extensive sample preparation steps and long analytical run times, increasing the likelihood of processing artifacts and limiting high throughput applications. We present here in vitro liquid extraction surface analysis mass spectrometry (ivLESA-MS), a variation on LESA-MS, performed directly on adherent cells grown in 96-well cell culture plates. To accomplish this, culture medium was aspirated immediately prior to analysis, and metabolites were extracted using LESA from the cell monolayer surface, followed by nano-electrospray ionization and MS analysis in negative ion mode. We applied this platform to characterize and compare lipidomic profiles of multiple breast cancer cell lines growing in culture (MCF-7, ZR-75-1, MDA-MB-453, and MDA-MB-231) and revealed distinct and reproducible lipidomic signatures between the cell lines. Additionally, we demonstrated time-dependent processing artifacts, underscoring the importance of immediate analysis. ivLESA-MS represents a rapid in vitro metabolomic method, which precludes the need for quenching, cell harvesting, sample preparation, and chromatography, significantly shortening preparation and analysis time while minimizing processing artifacts. This method could be further adapted to test drugs in vitro in a high throughput manner
    corecore