34 research outputs found
Assessment of copy number variations in 120 patients with Poland syndrome
Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown
Clinical and Molecular Characterization of Two Patients with CNTN6 Copy Number Variations
Submicroscopic chromosomal alterations usually involve different protein-coding genes and regulatory elements that are responsible for rare contiguous gene disorders, which complicate the understanding of genotype-phenotype correlations. Chromosome band 3p26.3 contains 3 genes encoding neuronal cell adhesion molecules: CHL1, CNTN6, and CNTN4. We describe 2 boys aged 8 years and 11 years mainly affected by intellectual disability and autism spectrum disorder, who harbor a paternally inherited 3p26.3 microdeletion and a 3p26.3 microduplication, respectively. Both anomalies involved only the CNTN6 gene, which encodes contactin 6, a member of the contactin family (MIM 607220). Contactins show pronounced brain expression and function. Interestingly, phenotypes in reciprocal microdeletions and microduplications of CNTN6 are very similar. In conclusion, our data, added to those reported in the literature, are particularly significant for understanding the pathogenic effect of single gene dosage alterations. As for other recurrent syndromes with variable phenotype, these findings are challenging in genetic counselling because of an evident variable penetrance
Thrombocytopenia-absent radius (TAR) syndrome due to compound inheritance for a 1q21.1 microdeletion and a low-frequency noncoding RBM8A SNP: a new familial case
Thrombocytopenia-absent radius syndrome (TAR; MIM 274000) is a rare autosomal recessive disorder combining specific skeletal abnormalities with a reduced platelet count. TAR syndrome has been associated with the compound inheritance of an interstitial microdeletion in 1q21.1 and a low frequency noncoding RBM8A SNP
Expanding the phenotype associated with interstitial 6p25.1p24.3 microdeletion: a new case and review of the literature
Interstitial 6p25.1p24.3 microdeletions are rare events and a clear karyotype/phenotype correlation has not yet been determined. In this study, we present the clinical and molecular description of a child with a de novo 6p25.1p24.3 microdeletion, characterized by array-CGH, associated with mild intellectual disability, facial dysmorphisms, hypopigmentation of the skin of the abdomen, heart defects, mild pontine hypoplasia and hypotonia. This deleted region contains 14 OMIM genes (NRN1, F13A1, RREB1, SSR1, RIOK1, DSP, BMP6, TXNDC5, BLOC1S5, EEF1E1, SLC35B3 and HULC). To the best of our knowledge until now only six cases have been reported presenting an interstitial microdeletion, but a unique case carries a deleted region containing the same genes of our patient. We compared clinical features and genetic data with that of the previously reported patient. We also analysed the gene content of the deleted region to investigate the possible role of specific genes in the clinical phenotype of our patient
Identification of an interstitial 18p11.32-p11.31 duplication including the EMILIN2 gene in a family with porokeratosis of Mibelli.
Porokeratosis is a rare disease of epidermal keratinization characterized by the histopathological feature of the cornoid lamella, a column of tightly fitted parakeratocytic cells, whose etiology is still unclear. Porokeratosis of Mibelli is a subtype of porokeratosis presenting a single plaque or a small number of plaques of variable size located unilaterally on limbs. It frequently appears in childhood and occurs with a higher incidence in males. Cytogenetic analyses were performed in all members of the family on lesioned and uninvolved skin. An array-CGH analysis was also performed utilizing the Human Genome CGH Microarray Kit G3 400 with 5.3 KB overall median probe spacing. Gene expression was performed on skin fibroblasts. In this study, we describe a Caucasian healthy 4-year-old child and his father showing features of porokeratosis of Mibelli. Array-CGH analysis revealed an interstitial 429.5 Kb duplication of chromosome 18p11.32-p11.3 containing four genes, namely: SMCHD1, EMILIN2, LPIN2, and MYOM1 both in patient and his father. EMILIN2 resulted overexpressed on skin fibroblasts. Also other members of this family, without evident signs of porokeratosis, carried the same duplication. Among these genes, we focused our attention on elastin microfibril interfacer 2 (EMILIN2) gene. Apoptosis plays a fundamental role in maintaining epidermal homeostasis, balancing keratinocytes proliferation, and forming the stratum corneum. EMILIN2 is known to trigger the apoptosis of different cell lines negatively affecting cell survival. It is expressed in the skin. We could speculate that the duplication and overexpression of EMILIN2 cause an abnormal apoptosis of epidermal keratinocytes and alter the process of keratinization, even if other epigenetic and genetic factors could also be involved. Our results could contribute to a better understanding of the pathogenesis of porokeratosis of Mibelli
Intragenic Microdeletion of ULK4 and Partial Microduplication of BRWD3 in Siblings with Neuropsychiatric Features and Obesity
ULK4 and BRWD3 deletions have been identified in patients with developmental/language delay and intellectual disability. Both genes play pivotal roles in brain development. In particular, ULK4 encodes serine/threonine kinases that are critical for the development and function of the nervous system, while BRWD3 plays a crucial role in ubiquitination, as part of the ubiquitin/proteasome system. We report on 2 brothers, aged 7.6 and 20 years, presenting with cognitive impairment, epilepsy, autistic features, hearing loss, and obesity. Array-CGH analysis demonstrated 2 rare CNVs in both siblings: a paternally inherited microdeletion of similar to 145 kb at 3p22.1, disrupting the ULK4 gene, and a maternally inherited microduplication of similar to 117 kb at Xq21.1 including only the BRWD3 gene. As already described for other recurrent syndromes with variable phenotype, these findings are challenging in genetic counseling because of an evident variable penetrance. We discuss the possible correlations between the clinical phenotype of our patients and the function of the genes involved in these microrearrangements. (C) 2018 S. Karger AG, Base
1p31.1 microdeletion including only NEGR1 gene in two patients.
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been involved in neuronal growth and connectivity. Genetic variants, in or near the NEGR1 locus, have been associated with obesity and, more recently, with learning difficulties, intellectual disability, and psychiatric disorders. Here, we described the only second report of NEGR1 gene disruption in 1p31.1 microdeletion in two patients. Patient 1 is a 14-year-old female with neurological and psychiatric features present also in her family. Patient 2 is a 5-month-old infant showing global hypotonia as unique neurological features till now. This patient also carries 7p22.1 duplication, of paternal origin, that could be responsible for some malformations present in the child. We hypothesize a role of NEGR1 in producing the phenotype of our patients and compare them with other cases previously reported in the literature and DECIPHER database to better identify a possible genotype-phenotype correlation