12 research outputs found

    Grapevine Responses to Heat Stress and Global Warming

    No full text
    The potential effects of the forthcoming climate change include the rising of the average annual temperature and the accumulation of extreme weather events, like frequent and severe heatwaves, a phenomenon known as global warming. Temperature is an important environmental factor affecting almost all aspects of growth and development in plants. The grapevine (Vitis spp.) is quite sensitive to extreme temperatures. Over the current century, temperatures are projected to continue rising with negative impacts on viticulture. These consequences range from short-term effects on wine quality to long-term issues such as the suitability of certain varieties and the sustainability of viticulture in traditional wine regions. Many viticultural zones, particularly in Mediterranean climate regions, may not be suitable for growing winegrapes in the near future unless we develop heat-stress-adapted genotypes or identify and exploit stress-tolerant germplasm. Grapevines, like other plants, have developed strategies to maintain homeostasis and cope with high-temperature stress. These mechanisms include physiological adaptations and activation of signaling pathways and gene regulatory networks governing heat stress response and acquisition of thermotolerance. Here, we review the major impacts of global warming on grape phenology and viticulture and focus on the physiological and molecular responses of the grapevine to heat stress

    Emerging Roles of Epigenetics in Grapevine and Winegrowing

    No full text
    Epigenetics refers to dynamic chemical modifications to the genome that can perpetuate gene activity without changes in the DNA sequence. Epigenetic mechanisms play important roles in growth and development. They may also drive plant adaptation to adverse environmental conditions by buffering environmental variation. Grapevine is an important perennial fruit crop cultivated worldwide, but mostly in temperate zones with hot and dry summers. The decrease in rainfall and the rise in temperature due to climate change, along with the expansion of pests and diseases, constitute serious threats to the sustainability of winegrowing. Ongoing research shows that epigenetic modifications are key regulators of important grapevine developmental processes, including berry growth and ripening. Variations in epigenetic modifications driven by genotype–environment interplay may also lead to novel phenotypes in response to environmental cues, a phenomenon called phenotypic plasticity. Here, we summarize the recent advances in the emerging field of grapevine epigenetics. We primarily highlight the impact of epigenetics to grapevine stress responses and acquisition of stress tolerance. We further discuss how epigenetics may affect winegrowing and also shape the quality of wine

    Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach

    No full text
    Load management actions in large buildings are pre-programmed by field engineers/users in the form of if-then-else rules for the set point of the thermostat. This fixed set of actions prevents smart zoning, i.e. to dynamically regulate the set points in every room at different levels according to geometry, orientation and interaction among rooms caused by occupancy patterns. In this work we frame the problem of load management with smart zoning into a multiple-mode feedback-based optimal control problem: multiple-mode refers to embedding multiple behaviors (triggered by building-occupant dynamic interaction) into the optimization problem; feedback-based refers to adopting a Hamilton-Jacobi-Bellman framework, with closed-loop control strategies using information stemming from building and weather states. The framework is solved by parameterizing the candidate control strategies and by searching for the optimal strategy in an adaptive self-tuning way. To demonstrate the proposed approach, we employ an EnergyPlus model of an actual office building in Crete, Greece. Extensive tests show that the proposed solution is able to provide, dynamically and autonomously, dedicated set points levels in every room in such a way to optimize the whole building performance (exploitation of renewable energy sources with improved thermal comfort). As compared to pre-programmed (non-optimal) strategies, we show that smart zoning makes it is possible to save more than 15% energy consumption, with 25% increased thermal comfort. As compared to optimized strategies in which smart zoning is not implemented, smart zoning leads to additional 4% reduced energy and 8% improved comfort, demonstrating improved occupant-building interaction. Such improvements are motivated by the fact that the approach exploits the building dynamics as learned from feedback data. Moreover, the closed-loop feature of the approach makes it robust to variable weather conditions and occupancy schedules.Team DeSchutte

    PLUG-N-HARVEST Architecture for Secure and Intelligent Management of Near-Zero Energy Buildings

    No full text
    Building Automation (BA) is key to encourage the growth of more sustainable cities and smart homes. However, current BA systems are not able to manage new constructions based on Adaptable/Dynamic Building Envelopes (ADBE) achieving near-zero energy-efficiency. The ADBE buildings integrate Renewable Energy Sources (RES) and Envelope Retrofitting (ER) that must be managed by new BA systems based on Artificial Intelligence (AI) and Internet of Things (IoT) through secure protocols. This paper presents the PLUG-N-HARVEST architecture based on cloud AI systems and security-by-design IoT networks to manage near-zero ADBE constructions in both residential and commercial buildings. To demonstrate the PLUG-N-HARVEST architecture, three different real-world pilots have been considered in Germany, Greece and Spain. The paper describes the Spain pilot of residential buildings including the deployment of IoT wireless networks (i.e., sensors and actuators) based on Zwave technology to enable plug-and-play installations. The real-world tests showed the high efficiency of security-by-design Internet communications between building equipment and cloud management systems. Moreover, the results of cloud intelligent management demonstrate the improvements in both energy consumption and comfort conditions

    A supervisory approach to microgrid demand response and climate control

    No full text
    Microgrids equipped with small-scale renewable-energy generation systems and energy storage units offer challenging opportunity from a control point of view. In fact, in order to improve resilience and enable islanded mode, micro-grid energy management systems must dynamically manage controllable loads by considering not only matching energy generation and consumption, but also thermal comfort of the occupants. Thermal comfort, which is often neglected or oversimplified, plays a major role in dynamic demand response, especially in front of intermittent behavior of the renewable energy sources. This paper presents a novel control algorithm for joint demand response management and thermal comfort optimization in a microgrid composed of a block of buildings, a photovoltaic array, a wind turbine, and an energy storage unit. In order to address the large-scale nature of the problem, the proposed control strategy adopt a two-level supervisory strategy: at the lower level, each building employs a local controller that processes only local measurements; at the upper level, a centralized unit supervises and updates the three controllers with the aim of minimizing the aggregate energy cost and thermal discomfort of the microgrid. Comparisons with alternative strategies reveal that the proposed supervisory strategy efficiently manages the demand response so as to sensibly improve independence of the microgrid with respect to the main grid, and guarantees at the same time thermal comfort of the occupants.Accepted Author ManuscriptTeam DeSchutte

    Enabling Optimal Energy Management with Minimal IoT Requirements: A Legacy A/C Case Study

    No full text
    The existing literature on energy saving focuses on large-scale buildings, wherein the energy-saving potential is substantially larger than smaller-scale buildings. However, the research intensity is significantly less for small-scale deployments and their capacities to regulate energy use individually, directly and without depreciating users’ comfort and needs. The current research effort focused on energy saving and user satisfaction, concerning a low-cost—yet technically sophisticated—methodology for controlling conventional residential HVAC units through cheap yet reliable actuation and sensing and auxiliary IoT equipment. The basic ingredients of the proposed experimental methodology involve a conventional A/C unit, an Arduino microcontroller, typical wireless IoT sensors and actuators, a configured graphical environment and a sophisticated, model-free, optimization-and-control algorithm (PCAO) that portrays the ground basis for achieving improved performance results in comparison with conventional methods. The main goal of this study was to produce a system that would adequately and expeditiously achieve energy savings by utilizing minimal hardware/equipment (affordability). The system was designed to be easily expandable in terms of new units or thermal equipment (expandability) and also to be autonomous, requiring zero user interventions at the experimental site (automation). The real-life measurements were collected over two different seasonal periods of the year (winter, summer) and concerned a conventional apartment in the city of Xanthi, Northern Greece, where summers and winters exhibit quite diverse climate characteristics. The final results revealed the increased efficiency of PCAO’s optimization in comparison with a conventional rule-based control strategy (RBC), as concerns energy savings and user satisfaction.Team DeSchutte
    corecore