82 research outputs found

    Classical information capacity of a class of quantum channels

    Full text link
    We consider the additivity of the minimal output entropy and the classical information capacity of a class of quantum channels. For this class of channels the norm of the output is maximized for the output being a normalized projection. We prove the additivity of the minimal output Renyi entropies with entropic parameters contained in [0, 2], generalizing an argument by Alicki and Fannes, and present a number of examples in detail. In order to relate these results to the classical information capacity, we introduce a weak form of covariance of a channel. We then identify several instances of weakly covariant channels for which we can infer the additivity of the classical information capacity. Both additivity results apply to the case of an arbitrary number of different channels. Finally, we relate the obtained results to instances of bi-partite quantum states for which the entanglement cost can be calculated.Comment: 14 pages, RevTeX (replaced with published version

    Optimal entanglement witnesses for continuous-variable systems

    Full text link
    This paper is concerned with all tests for continuous-variable entanglement that arise from linear combinations of second moments or variances of canonical coordinates, as they are commonly used in experiments to detect entanglement. All such tests for bi-partite and multi-partite entanglement correspond to hyperplanes in the set of second moments. It is shown that all optimal tests, those that are most robust against imperfections with respect to some figure of merit for a given state, can be constructed from solutions to semi-definite optimization problems. Moreover, we show that for each such test, referred to as entanglement witness based on second moments, there is a one-to-one correspondence between the witness and a stronger product criterion, which amounts to a non-linear witness, based on the same measurements. This generalizes the known product criteria. The presented tests are all applicable also to non-Gaussian states. To provide a service to the community, we present the documentation of two numerical routines, FULLYWIT and MULTIWIT, which have been made publicly available.Comment: 14 pages LaTeX, 1 figure, presentation improved, references update

    Precisely timing dissipative quantum information processing

    Get PDF
    Dissipative engineering constitutes a framework within which quantum information processing protocols are powered by system-environment interaction rather than by unitary dynamics alone. This framework embraces noise as a resource, and consequently, offers a number of advantages compared to one based on unitary dynamics alone, e.g., that the protocols are typically independent of the initial state of the system. However, the time independent nature of this scheme makes it difficult to imagine precisely timed sequential operations, conditional measurements or error correction. In this work, we provide a path around these challenges, by introducing basic dissipative gadgets which allow us to precisely initiate, trigger and time dissipative operations, while keeping the system Liouvillian time-independent. These gadgets open up novel perspectives for thinking of timed dissipative quantum information processing. As an example, we sketch how measurement based computation can be simulated in the dissipative setting.Comment: 5+5 pages, material adde

    Correlations, spectral gap, and entanglement in harmonic quantum systems on generic lattices

    Full text link
    We investigate the relationship between the gap between the energy of the ground state and the first excited state and the decay of correlation functions in harmonic lattice systems. We prove that in gapped systems, the exponential decay of correlations follows for both the ground state and thermal states. Considering the converse direction, we show that an energy gap can follow from algebraic decay and always does for exponential decay. The underlying lattices are described as general graphs of not necessarily integer dimension, including translationally invariant instances of cubic lattices as special cases. Any local quadratic couplings in position and momentum coordinates are allowed for, leading to quasi-free (Gaussian) ground states. We make use of methods of deriving bounds to matrix functions of banded matrices corresponding to local interactions on general graphs. Finally, we give an explicit entanglement-area relationship in terms of the energy gap for arbitrary, not necessarily contiguous regions on lattices characterized by general graphs.Comment: 26 pages, LaTeX, published version (figure added

    Assessing non-Markovian dynamics

    Full text link
    We investigate what a snapshot of a quantum evolution - a quantum channel reflecting open system dynamics - reveals about the underlying continuous time evolution. Remarkably, from such a snapshot, and without imposing additional assumptions, it can be decided whether or not a channel is consistent with a time (in)dependent Markovian evolution, for which we provide computable necessary and sufficient criteria. Based on these, a computable measure of `Markovianity' is introduced. We discuss how the consistency with Markovian dynamics can be checked in quantum process tomography. The results also clarify the geometry of the set of quantum channels with respect to being solutions of time (in)dependent master equations.Comment: 5 pages, RevTex, 2 figures. (Except from typesetting) version to be published in the Physical Review Letter

    Extracting dynamical equations from experimental data is NP-hard

    Get PDF
    The behavior of any physical system is governed by its underlying dynamical equations. Much of physics is concerned with discovering these dynamical equations and understanding their consequences. In this work, we show that, remarkably, identifying the underlying dynamical equation from any amount of experimental data, however precise, is a provably computationally hard problem (it is NP-hard), both for classical and quantum mechanical systems. As a by-product of this work, we give complexity-theoretic answers to both the quantum and classical embedding problems, two long-standing open problems in mathematics (the classical problem, in particular, dating back over 70 years).Comment: For mathematical details, see arXiv:0908.2128[math-ph]. v2: final version, accepted in Phys. Rev. Let

    Physical properties of the Schur complement of local covariance matrices

    Get PDF
    General properties of global covariance matrices representing bipartite Gaussian states can be decomposed into properties of local covariance matrices and their Schur complements. We demonstrate that given a bipartite Gaussian state ρ12\rho_{12} described by a 4×44\times 4 covariance matrix \textbf{V}, the Schur complement of a local covariance submatrix V1\textbf{V}_1 of it can be interpreted as a new covariance matrix representing a Gaussian operator of party 1 conditioned to local parity measurements on party 2. The connection with a partial parity measurement over a bipartite quantum state and the determination of the reduced Wigner function is given and an operational process of parity measurement is developed. Generalization of this procedure to a nn-partite Gaussian state is given and it is demonstrated that the n1n-1 system state conditioned to a partial parity projection is given by a covariance matrix such as its 2×22 \times 2 block elements are Schur complements of special local matrices.Comment: 10 pages. Replaced with final published versio
    corecore