554 research outputs found
Herschel discovery of a new class of cold, faint debris discs
We present Herschel PACS 100 and 160 μm observations of the solar-type stars α Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel open time key programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 μm for all three stars. HD 210277 also shows a small excess at 100 μm, while the 100 μm fluxes of α Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. Both α Men and HD 88230 are spatially resolved in the PACS 160 μm images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from ~115 to ≤ 250 AU. The estimated black body temperatures from the 100 and 160 μm fluxes are ≲22 K, and the fractional luminosity of the cold dust is L_(dust)/L_⋆ ~ 10^(-6), close to the luminosity of the solar-system’s Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars, so they cannot be explained easily invoking “classical” debris disc models
Cold DUst around NEarby Stars (DUNES). First results: A resolved exo-Kuiper belt around the solar-like star ζ^2 Ret
We present the first far-IR observations of the solar-type stars δ Pav, HR 8501, 51 Peg and ζ^2 Ret, taken within the context of the DUNES Herschel open time key programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 μm fluxes from δ Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than L_(dust)/L_* ~ 5 × 10^(-7) (1σ level) around those stars. A flattened, disk-like structure with a semi-major axis of ~100 AU in size is detected around ζ^2 Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with L_(dust)/L_* ≈ 10^(-5)
Chemical fingerprints of hot Jupiter planet formation
The current paradigm to explain the presence of Jupiters with small orbital
periods (P 10 days; hot Jupiters) that involves their formation beyond the
snow line following inward migration, has been challenged by recent works that
explored the possibility of in situ formation. We aim to test whether stars
harbouring hot Jupiters and stars with more distant gas-giant planets show any
chemical peculiarity that could be related to different formation processes.
Our results show that stars with hot Jupiters have higher metallicities than
stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20
dex. The data also shows a tendency of stars with cool Jupiters to show larger
abundances of elements. No abundance differences between stars with
cool and hot Jupiters are found when considering iron peak, volatile elements
or the C/O, and Mg/Si ratios. The corresponding -values from the statistical
tests comparing the cumulative distributions of cool and hot planet hosts are
0.20, 0.01, 0.81, and 0.16 for metallicity, , iron-peak, and
volatile elements, respectively. We confirm previous works suggesting that more
distant planets show higher planetary masses as well as larger eccentricities.
We note differences in age and spectral type between the hot and cool planet
hosts samples that might affect the abundance comparison. The differences in
the distribution of planetary mass, period, eccentricity, and stellar host
metallicity suggest a different formation mechanism for hot and cool Jupiters.
The slightly larger abundances found in stars harbouring cool Jupiters
might compensate their lower metallicities allowing the formation of gas-giant
planets.Comment: Accepted by Astronomy & Astrophysic
Connecting substellar and stellar formation. The role of the host star's metallicity
Most of our current understanding of the planet formation mechanism is based
on the planet metallicity correlation derived mostly from solar-type stars
harbouring gas-giant planets. To achieve a far more reaching grasp on the
substellar formation process we aim to analyse in terms of their metallicity a
diverse sample of stars (in terms of mass and spectral type) covering the whole
range of possible outcomes of the planet formation process (from planetesimals
to brown dwarfs and low-mass binaries). Our methodology is based on the use of
high-precision stellar parameters derived by our own group in previous works
from high-resolution spectra by using the iron ionisation and equilibrium
conditions. All values are derived in an homogeneous way, except for the M
dwarfs where a methodology based on the use of pseudo equivalent widths of
spectral features was used. Our results show that as the mass of the substellar
companion increases the metallicity of the host star tendency is to lower
values. The same trend is maintained when analysing stars with low-mass stellar
companions and a tendency towards a wide range of host star's metallicity is
found for systems with low mass planets. We also confirm that more massive
planets tend to orbit around more massive stars. The core-accretion formation
mechanism for planet formation achieves its maximum efficiency for planets with
masses in the range 0.2 and 2 M. Substellar objects with higher
masses have higher probabilities of being formed as stars. Low-mass planets and
planetesimals might be formed by core-accretion even around low-metallicity
stars.Comment: Accepted by A&
VLA 3.5 cm continuum sources in the Serpens cloud core
We present VLA 3.5 cm continuum observations of the Serpens cloud core. 22
radio continuum sources are detected. 16 out of the 22 cm sources are suggested
to be associated with young stellar objects (Class 0, Class I, flat-spectrum,
and Class II) of the young Serpens cluster. The rest of the VLA sources
plausibly are background objects. Most of the Serpens cm sources likely
represent thermal radio jets; on the other hand, the radio continuum emission
of some sources could be due to a gyrosynchroton mechanism arising from
coronally active young stars. The Serpens VLA sources are spatially distributed
into two groups; one of them located towards the NW clump of the Serpens core,
where only Class 0 and Class I protostars are found to present cm emission, and
a second group located towards the SE clump, where radio continuum sources are
associated with objects in evolutionary classes from Class 0 to Class II. This
subgrouping is similar to that found in the near IR, mid-IR and mm wavelength
regimes.Comment: 2 figures, accepted by Astronomical journa
Searching for signatures of planet formation in stars with circumstellar debris discs
(Abridged) Tentative correlations between the presence of dusty debris discs
and low-mass planets have been presented. In parallel, detailed chemical
abundance studies have reported different trends between samples of planet and
non-planet hosts. We determine in a homogeneous way the metallicity, and
abundances of a sample of 251 stars including stars with known debris discs,
with debris discs and planets, and only with planets. Stars with debris discs
and planets have the same [Fe/H] behaviour as stars hosting planets, and they
also show a similar -Tc trend. Different behaviour in the -Tc
trend is found between the samples of stars without planets and the samples of
planet hosts. In particular, when considering only refractory elements,
negative slopes are shown in cool giant planet hosts, whilst positive ones are
shown in stars hosting low-mass planets. Stars hosting exclusively close-in
giant planets show higher metallicities and positive -Tc slope. A
search for correlations between the -Tc slopes and the stellar
properties reveals a moderate but significant correlation with the stellar
radius and as well as a weak correlation with the stellar age. The fact that
stars with debris discs and stars with low-mass planets do not show neither
metal enhancement nor a different -Tc trend might indicate a
correlation between the presence of debris discs and the presence of low-mass
planets. We extend results from previous works which reported differences in
the -Tc trends between planet hosts and non hosts. However, these
differences tend to be present only when the star hosts a cool distant planet
and not in stars hosting exclusively low-mass planets.Comment: Accepted for publication in Astronomy and Astrophysic
A Theoretical Construction of Thin Shell Wormhole from Tidal Charged Black hole
Recently, Dadhich et al [ Phys.Lett.B 487, 1 (2000)] have discovered a black
hole solution localized on a three brane in five dimensional gravity in the
Randall-Sundrum scenario. In this article, we develop a new class of thin shell
wormhole by surgically grafting above two black hole spacetimes. Various
aspects of this thin wormhole are also analyzed.Comment: 14 pages, 6 figures, Accepted in Gen.Rel.Gra
- …