8 research outputs found

    Do Chatbots Dream of Androids? Prospects for the Technological Development of Artificial Intelligence and Robotics

    Get PDF
    The article discusses the main trends in the development of artificial intelligence systems and robotics (AI&R). The main question that is considered in this context is whether artificial systems are going to become more and more anthropomorphic, both intellectually and physically. In the current article, the author analyzes the current state and prospects of technological development of artificial intelligence and robotics, and also determines the main aspects of the impact of these technologies on society and economy, indicating the geopolitical strategic nature of this influence. The author considers various approaches to the definition of artificial intelligence and robotics, focusing on the subject-oriented and functional ones. It also compares AI&R abilities and human abilities in areas such as categorization, pattern recognition, planning and decision making, etc. Based on this comparison, we investigate in which areas AI&R’s performance is inferior to a human, and in which cases it is superior to one. The modern achievements in the field of robotics and artificial intelligence create the necessary basis for further discussion of the applicability of goal setting in engineering, in the form of a Turing test. It is shown that development of AI&R is associated with certain contradictions that impede the application of Turing’s methodology in its usual format. The basic contradictions in the development of AI&R technologies imply that there is to be a transition to a post-Turing methodology for assessing engineering implementations of artificial intelligence and robotics. In such implementations, on the one hand, the ‘Turing wall’ is removed, and on the other hand, artificial intelligence gets its physical implementation

    Commercial Arctic shipping through the Northeast Passage:routes, resources, governance, technology, and infrastructure

    Get PDF
    The Russian and Norwegian Arctic are gaining notoriety as an alternative maritime route connecting the Atlantic and Pacific Oceans and as sources of natural resources. The renewed interest in the Northeast Passage or the Northern Sea Route is fueled by a recession of Arctic sea ice coupled with the discovery of new natural resources at a time when emerging and global markets are in growing demand for them. Driven by the expectation of potential future economic importance of the region, political interest and governance has been rapidly developing, mostly within the Arctic Council. However, this paper argues that optimism regarding the potential of Arctic routes as an alternative to the Suez Canal is overstated. The route involves many challenges: jurisdictional disputes create political uncertainties; shallow waters limit ship size; lack of modern deepwater ports and search and rescue (SAR) capabilities requires ships to have higher standards of autonomy and safety; harsh weather conditions and free-floating ice make navigation more difficult and schedules more variable; and more expensive ship construction and operation costs lessen the economic viability of the route. Technological advances and infrastructure investments may ameliorate navigational challenges, enabling increased shipping of natural resources from the Arctic to global markets.Albert Buixadé Farré, Scott R. Stephenson, Linling Chen, Michael Czub, Ying Dai, Denis Demchev, Yaroslav Efimov, Piotr Graczyk, Henrik Grythe, Kathrin Keil, Niku Kivekäs, Naresh Kumar, Nengye Liu, Igor Matelenok, Mari Myksvoll, Derek O'Leary, Julia Olsen, Sachin Pavithran.A.P., Edward Petersen, Andreas Raspotnik, Ivan Ryzhov, Jan Solski, Lingling Suo, Caroline Troein, Vilena Valeeva, Jaap van Rijckevorsel and Jonathan Wightin

    Pitfalls of the Sublinear QAOA-Based Factorization Algorithm

    No full text
    Quantum computing devices are believed to be powerful in solving the prime factorization problem, which is at the heart of widely deployed public-key cryptographic tools. However, the implementation of Shor’s quantum factorization algorithm requires significant resources scaling linearly with the number size; taking into account an overhead that is required for quantum error correction the estimation is that 20 millions of (noisy) physical qubits are required for factoring 2048-bit RSA key in 8 hours. Recent proposal by Yan et al. claims a possibility of solving the factorization problem with sublinear quantum resources. As we demonstrate in our work, this proposal lacks systematic analysis of the computational complexity of the classical part of the algorithm, which exploits the Schnorr’s lattice-based approach. We provide several examples illustrating the need in additional resource analysis for the proposed quantum factorization algorithm

    Lattice limit cycle dynamics: Influence of long-distance reactive and diffusive mixing

    No full text
    The properties of global oscillations produced by coupled reactive stochastic discrete systems on a 2D lattice support are studied, taking into account the competitive influence of local and global mixing processes. Two types of global mixing are considered: reactive and diffusive. It is shown that in the case of diffusive mixing the increase in the diffusive coupling leads to a corresponding increase in the amplitude of the global oscillations. In the case of reactive mixing the competition of local-to-global effects leads to unexpected complex phenomena. Kinetic Monte Carlo simulations demonstrate that the amplitude of oscillations as a function of the mixing-reactive coupling presents an optimal value, which is attributed to the competitive effects between the local and global processes

    Net removal of dissolved organic carbon in the anoxic waters of the Black Sea

    No full text
    Dissolved organic carbon (DOC) concentrations in the deep Black Sea are ~2.5 times higher than found in the globalocean. The two major external sources of DOC are rivers and the Sea of Marmara, a transit point for waters from theMediterranean Sea. In addition, expansive phytoplankton blooms contribute autochthonous carbon to the BlackSea's ~800 Tg C DOC reservoir. Here, a basin-wide zonal section of DOC is explored using data from the 2013Dutch GEOTRACES GA04-N, cruise 64PE373. DOC distributions are interpreted with respect to well-described hydrographicand biogeochemical layers of the Black Sea. Observed DOC concentrations were N180 µmol kg-1 at thesurface, decreasing to ~125 µmol kg-1 at the base of the oxic layer and reaching a minimumof ~113 µmol kg-1 inthe upper anoxic layer between ~150 and 500 m. At greater depths the concentrations increased;maximum anoxiclayer concentrations of 122 µmol kg-1 were found in the homogeneous benthic bottomlayer (N1775 m). Concentrationsare then predicted based on conservationwith respect to salinity using linear end-membermixingmodels,and predictions are comparedwith observations to estimate net removal (i.e., deficits) and accumulation (i.e., surpluses).Amaximumsurplus of ~10 µmol kg-1 was identified at the surface, likely due to local primary production.DOC exported to depthwas non-conservative: up to ~34-41 µmol kg-1was removed from the basin's oxic layer inb5 years, and an additional 13±5 µmol kg-1 was removed fromthe anoxic layer during its ~300 to 600-year residencetime, given steady state. These deficits represent a removal of ~19% in the oxic water and a further removalof ~10% under anoxia, for a net removal of 48 µmol kg-1 (or ~29%) of allochthonous DOC,with respect to predictedconcentrations.We find no evidence for DOC accumulation (i.e., net production) in the anoxic Black Sea, and suggestthat concentrations are elevated relative to the ocean due to input of terrigenous DOC fromrivers;we estimatethat N50% of DOC in the deep Black Sea is terrigenous. The Black Sea's relatively elevated DOC pool may be analogousto a hypothesized anoxic Eocene ocean's elevated reservoir only if the Eocene ocean received a substantialamount of terrigenous DOC

    Embedding problems: Geometric and topological aspects

    No full text

    Siderite formation and evolution of sedimentary iron ore deposition in the Earth’s history

    No full text
    corecore