2,536 research outputs found

    Discovery of a Large-scale Wall in the Direction of Abell 22

    Full text link
    We report on the discovery of a large-scale wall in the direction of Abell 22. Using photometric and spectroscopic data from the Las Campanas Observatory and Anglo-Australian Telescope Rich Cluster Survey, Abell 22 is found to exhibit a highly unusual and striking redshift distribution. We show that Abell 22 exhibits a foreground wall-like structure by examining the galaxy distributions in both redshift space and on the colour-magnitude plane. A search for other galaxies and clusters in the nearby region using the 2dF Galaxy Redshift Survey database suggests that the wall-like structure is a significant large-scale, non-virialized filament which runs between two other Abell clusters either side of Abell 22. The filament stretches over at least >40 Mpc in length and 10 Mpc in width at the redshift of Abell 22.Comment: 6 pages, 4 figures, accepted for publication in MNRAS letter

    The ROSAT Deep Cluster Survey: the X-ray Luminosity Function out to z=0.8

    Get PDF
    We present the X-ray Luminosity Function (XLF) of the ROSAT Deep Cluster Survey (RDCS) sample over the redshift range 0.05-0.8. Our results are derived from a complete flux-limited subsample of 70 galaxy clusters, representing the brightest half of the total sample, which have been spectroscopically identified down to the flux limit of 4*10^{-14} erg/cm^2/s (0.5-2.0 keV) and have been selected via a serendipitous search in ROSAT-PSPC pointed observations. The redshift baseline is large enough that evolutionary effects can be studied within the sample. The local XLF (z < 0.25) is found to be in excellent agreement with previous determinations using the ROSAT All-Sky Survey data. The XLF at higher redshifts, when combined with the deepest number counts constructed to date (f>2*10^{-14} arg/cm^2/s), reveal no significant evolution at least out to z=0.8, over a luminosity range 2*10^{42}-3*10^{44} erg/s in the [0.5-2 keV] band. These findings extend the study of cluster evolution to the highest redshifts and the faintest fluxes probed so far in X-ray surveys. They complement and do not necessarily conflict with those of the Einstein Extended Medium Sensitivity Survey, leaving the possibility of negative evolution of the brightest end of the XLF at high redshifts.Comment: 12 pages, 4 figures, LaTeX (aasms4.sty). To appear in ApJ Letter

    Statistical Topological Insulators

    Get PDF
    We define a class of insulators with gapless surface states protected from localization due to the statistical properties of a disordered ensemble, namely due to the ensemble's invariance under a certain symmetry. We show that these insulators are topological, and are protected by a Z2\mathbb{Z}_2 invariant. Finally, we prove that every topological insulator gives rise to an infinite number of classes of statistical topological insulators in higher dimensions. Our conclusions are confirmed by numerical simulations.Comment: 6 pages, 1 table, 5 figures, this is the final, published versio

    Non-hydrostatic gas in the core of the relaxed galaxy cluster A1795

    Full text link
    Chandra data on A1795 reveal a mild edge-shaped discontinuity in the gas density and temperature in the southern sector of the cluster at r=60/h kpc. The gas inside the edge is 1.3-1.5 times denser and cooler than outside, while the pressure is continuous, indicating that this is a "cold front", the surface of contact between two moving gases. The continuity of the pressure indicates that the current relative velocity of the gases is near zero, making the edge appear to be in hydrostatic equilibrium. However, a total mass profile derived from the data in this sector under the equilibrium assumption, exhibits an unphysical jump by a factor of 2, with the mass inside the edge being lower. We propose that the cooler gas is "sloshing" in the cluster gravitational potential well and is now near the point of maximum displacement, where it has zero velocity but nonzero centripetal acceleration. The distribution of this non-hydrostatic gas should reflect the reduced gravity force in the accelerating reference frame, resulting in the apparent mass discontinuity. Assuming that the gas outside the edge is hydrostatic, the acceleration of the moving gas can be estimated from the mass jump, a ~ 800 h km/s/(10^8 yr). The gravitational potential energy of this gas that is available for dissipation is about half of its current thermal energy. The length of the cool filament extending from the cD galaxy (Fabian et al.) may give the amplitude of the gas sloshing, 30-40/h kpc. Such gas bulk motion might be caused by a disturbance of the central gravitational potential by past subcluster infall.Comment: Minor text clarifications to correspond to published version. 5 pages, 1 figure in color, uses emulateapj.sty. ApJ Letters in pres

    The X-ray Fundamental Plane and LXTL_X-T Relation of Clusters of Galaxies

    Get PDF
    We analyze the relations among central gas density, core radius, and temperature of X-ray clusters by plotting the observational data in the three-dimensional (logρ0\log \rho_0, logR\log R, and logT\log T) space and find that the data lie on a 'fundamental plane'. Its existence implies that the clusters form a two-parameter family. The data on the plane still has a correlation and form a band on the plane. The observed relation LXT3L_{\rm X} \propto T^3 turns out to be the cross section of the band perpendicular to the major axis, while the major axis is found to describe the virial density. We discuss implications of this two-parameter family nature of X-ray clusters.Comment: 7 pages, 2 figures. To be published in ApJ Letter

    An infrared survey of brightest cluster galaxies: Paper I

    Full text link
    We report on an imaging survey with the Spitzer Space Telescope of 62 brightest cluster galaxies with optical line emission. These galaxies are located in the cores of X-ray luminous clusters selected from the ROSAT All-Sky Survey. We find that about half of these sources have a sign of excess infrared emission; 22 objects out of 62 are detected at 70 microns, 18 have 8 to 5.8 micron flux ratios above 1.0 and 28 have 24 to 8 micron flux ratios above 1.0. Altogether 35 of 62 objects in our survey exhibit at least one of these signs of infrared excess. Four galaxies with infrared excesses have a 4.5/3.6 micron flux ratio indicating the presence of hot dust, and/or an unresolved nucleus at 8 microns. Three of these have high measured [OIII](5007A)/Hbeta flux ratios suggesting that these four, Abell 1068, Abell 2146, and Zwicky 2089, and R0821+07, host dusty active galactic nuclei (AGNs). 9 objects (including the four hosting dusty AGNs) have infrared luminosities greater than 10^11 L_sol and so can be classified as luminous infrared galaxies (LIRGs). Excluding the four systems hosting dusty AGNs, the excess mid-infrared emission in the remaining brightest cluster galaxies is likely related to star formation.Comment: accepted for publication in ApJ

    Metallic phase of the quantum Hall effect in four-dimensional space

    Get PDF
    We study the phase diagram of the quantum Hall effect in four-dimensional (4D) space. Unlike in 2D, in 4D there exists a metallic as well as an insulating phase, depending on the disorder strength. The critical exponent ν1.2\nu\approx 1.2 of the diverging localization length at the quantum Hall insulator-to-metal transition differs from the semiclassical value ν=1\nu=1 of 4D Anderson transitions in the presence of time-reversal symmetry. Our numerical analysis is based on a mapping of the 4D Hamiltonian onto a 1D dynamical system, providing a route towards the experimental realization of the 4D quantum Hall effect.Comment: 4+epsilon pages, 3 figure

    The Galaxy Cluster Luminosity-Temperature Relationship and Iron Abundances - A Measure of Formation History ?

    Get PDF
    Both the X-ray luminosity-temperature (L-T) relationship and the iron abundance distribution of galaxy clusters show intrinsic dispersion. Using a large set of galaxy clusters with measured iron abundances we find a correlation between abundance and the relative deviation of a cluster from the mean L-T relationship. We argue that these observations can be explained by taking into account the range of cluster formation epochs expected within a hierarchical universe. The known relationship of cooling flow mass deposition rate to luminosity and temperature is also consistent with this explanation. From the observed cluster population we estimate that the oldest clusters formed at z>~2. We propose that the iron abundance of a galaxy cluster can provide a parameterization of its age and dynamical history.Comment: 13 pages Latex, 2 figures, postscript. Accepted for publication in ApJ Letter
    corecore