29,310 research outputs found
Bilayer graphene: gap tunability and edge properties
Bilayer graphene -- two coupled single graphene layers stacked as in graphite
-- provides the only known semiconductor with a gap that can be tuned
externally through electric field effect. Here we use a tight binding approach
to study how the gap changes with the applied electric field. Within a parallel
plate capacitor model and taking into account screening of the external field,
we describe real back gated and/or chemically doped bilayer devices. We show
that a gap between zero and midinfrared energies can be induced and externally
tuned in these devices, making bilayer graphene very appealing from the point
of view of applications. However, applications to nanotechnology require
careful treatment of the effect of sample boundaries. This being particularly
true in graphene, where the presence of edge states at zero energy -- the Fermi
level of the undoped system -- has been extensively reported. Here we show that
also bilayer graphene supports surface states localized at zigzag edges. The
presence of two layers, however, allows for a new type of edge state which
shows an enhanced penetration into the bulk and gives rise to band crossing
phenomenon inside the gap of the biased bilayer system.Comment: 8 pages, 3 fugures, Proceedings of the International Conference on
Theoretical Physics: Dubna-Nano200
The role of pressure on the magnetism of bilayer graphene
We study the effect of pressure on the localized magnetic moments induced by
vacancies in bilayer graphene in the presence of topological defects breaking
the bipartite nature of the lattice. By using a mean-field Hubbard model we
address the two inequivalent types of vacancies that appear in the Bernal
stacking bilayer graphene. We find that by applying pressure in the direction
perpendicular to the layers the critical value of the Hubbard interaction
needed to polarize the system decreases. The effect is particularly enhanced
for one type of vacancies, and admits straightforward generalization to
multilayer graphene in Bernal stacking and graphite. The present results
clearly demonstrate that the magnetic behavior of multilayer graphene can be
affected by mechanical transverse deformation
Beyond the soft photon approximation in radiative production and decay of charged vector mesons
We study the effects of model-dependent contributions and the electric
quadrupole moment of vector mesons in the decays and
. Their interference with the amplitude originating
from the radiation due to electric charges vanishes for photons emitted
collinearly to the charged particle in the final state. This brings further
support to our claim in previous works, that measurements of the photon energy
spectrum for nearly collinear photons in those decays are suitable for a first
measurement of the magnetic dipole moment of charged vector mesons.Comment: 13 pages, 2 eps figures, Latex. Accepted for publication in Journal
of Physics G: Nuclear and Particle Physics(2001
Modeling non-thermal emission from stellar bow shocks
Runaway O- and early B-type stars passing throughout the interstellar medium
at supersonic velocities and characterized by strong stellar winds may produce
bow shocks that can serve as particle acceleration sites. Previous theoretical
models predict the production of high energy photons by non-thermal radiative
processes, but their efficiency is still debated. We aim to test and explain
the possibility of emission from the bow shocks formed by runaway stars
traveling through the interstellar medium by using previous theoretical models.
We apply our model to AE Aurigae, the first reported star with an X-ray
detected bow shock, to BD+43 3654, in which the observations failed in
detecting high energy emission, and to the transition phase of a supergiant
star in the late stages of its life.From our analysis, we confirm that the
X-ray emission from the bow shock produced by AE Aurigae can be explained by
inverse Compton processes involving the infrared photons of the heated dust. We
also predict low high energy flux emission from the bow shock produced by BD+43
3654, and the possibility of high energy emission from the bow shock formed by
a supergiant star during the transition phase from blue to red supergiant.Bow
shock formed by different type of runaway stars are revealed as a new possible
source of high energy photons in our neighbourhood
Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms
Clustering non-Euclidean data is difficult, and one of the most used
algorithms besides hierarchical clustering is the popular algorithm
Partitioning Around Medoids (PAM), also simply referred to as k-medoids. In
Euclidean geometry the mean-as used in k-means-is a good estimator for the
cluster center, but this does not hold for arbitrary dissimilarities. PAM uses
the medoid instead, the object with the smallest dissimilarity to all others in
the cluster. This notion of centrality can be used with any (dis-)similarity,
and thus is of high relevance to many domains such as biology that require the
use of Jaccard, Gower, or more complex distances.
A key issue with PAM is its high run time cost. We propose modifications to
the PAM algorithm to achieve an O(k)-fold speedup in the second SWAP phase of
the algorithm, but will still find the same results as the original PAM
algorithm. If we slightly relax the choice of swaps performed (at comparable
quality), we can further accelerate the algorithm by performing up to k swaps
in each iteration. With the substantially faster SWAP, we can now also explore
alternative strategies for choosing the initial medoids. We also show how the
CLARA and CLARANS algorithms benefit from these modifications. It can easily be
combined with earlier approaches to use PAM and CLARA on big data (some of
which use PAM as a subroutine, hence can immediately benefit from these
improvements), where the performance with high k becomes increasingly
important.
In experiments on real data with k=100, we observed a 200-fold speedup
compared to the original PAM SWAP algorithm, making PAM applicable to larger
data sets as long as we can afford to compute a distance matrix, and in
particular to higher k (at k=2, the new SWAP was only 1.5 times faster, as the
speedup is expected to increase with k)
Energy gaps at neutrality point in bilayer graphene in a magnetic field
Utilizing the Baym-Kadanoff formalism with the polarization function
calculated in the random phase approximation, the dynamics of the
quantum Hall state in bilayer graphene is analyzed. Two phases with nonzero
energy gap, the ferromagnetic and layer asymmetric ones, are found. The phase
diagram in the plane , where is a
top-bottom gates voltage imbalance, is described. It is shown that the energy
gap scales linearly, $\Delta E\sim 14 B[T]K, with magnetic field.Comment: 5 pages, 3 figures, title changed, references added, JETP Letters
versio
Ewing Sarcoma/Primitive Neuroectodermal Tumor of the Kidney: Two Unusual Presentations of a Rare Tumor
Only few cases of primary renal Ewing's sarcoma have been reported in the literature to date. We present here two cases of renal ES/PNET with an uncanny presentation. The first case was discovered after the patient presented clinically with irradiating flank pain, mimicking the pain related with kidney stones. The second case had clinical presentation of pulmonary thromboembolism after the patient was involved in an automobilist accident. The tumors were mainly composed of small blue cells which by immunohistochemical were positive for neural markers, and FISH revealed the translocation 22q12 for the EWSR1 gene. The diagnosis of renal primitive neuroectodermal tumor/EWING tumor is very rare and usually involves several different diagnostic techniques. The differential diagnosis is usually broad with frequent overlapping features between the entities. The cases presented in this paper illustrated the difficulties with which routine anatomical pathologist is faced when dealing with rare renal poorly differentiated neoplasm in adults
q-Legendre Transformation: Partition Functions and Quantization of the Boltzmann Constant
In this paper we construct a q-analogue of the Legendre transformation, where
q is a matrix of formal variables defining the phase space braidings between
the coordinates and momenta (the extensive and intensive thermodynamic
observables). Our approach is based on an analogy between the semiclassical
wave functions in quantum mechanics and the quasithermodynamic partition
functions in statistical physics. The basic idea is to go from the
q-Hamilton-Jacobi equation in mechanics to the q-Legendre transformation in
thermodynamics. It is shown, that this requires a non-commutative analogue of
the Planck-Boltzmann constants (hbar and k_B) to be introduced back into the
classical formulae. Being applied to statistical physics, this naturally leads
to an idea to go further and to replace the Boltzmann constant with an infinite
collection of generators of the so-called epoch\'e (bracketing) algebra. The
latter is an infinite dimensional noncommutative algebra recently introduced in
our previous work, which can be perceived as an infinite sequence of
"deformations of deformations" of the Weyl algebra. The generators mentioned
are naturally indexed by planar binary leaf-labelled trees in such a way, that
the trees with a single leaf correspond to the observables of the limiting
thermodynamic system
- …