159 research outputs found

    On the thermal stability of transonic accretion discs

    Get PDF
    Nonlinear time-dependent calculations have been carried out in order to study the evolution of the thermal instability for optically thick, transonic, slim accretion discs around black holes. In the present calculations we have investigated only the original version of the slim disc model with low viscosity. This version does not yet contain several important non-local effects but our aim is to use it as a standard reference against which to compare the results from forthcoming studies in which additional effects will be added one by one thus giving a systematic way of understanding the contribution from each of them. A range of results for different cases is presented showing a number of interesting features. One preliminary conclusion is that the stabilizing effect of advection seems not to be strong enough in these low viscosity models to allow for limit cycle behaviour to occur.Comment: 23 pages, Latex, 11 Postscript figures, accepted by MNRA

    Spectral variability in transonic discs around black holes

    Get PDF
    Transonic discs with accretion rates relevant to intrinsically bright Galactic X-ray sources (L≈1038L\approx 10^{38}-1039ergs−110^{39} {\rm erg s}^{-1}) exhibit a time dependent cyclic behaviour due to the onset of a thermal instability driven by radiation pressure. In this paper we calculate radiation spectra emitted from thermally-unstable discs to provide detailed theoretical predictions for observationally relevant quantities. The emergent spectrum has been obtained by solving self-consistently the vertical structure and radiative transfer in the disc atmosphere. We focus on four particular stages of the disc evolution, the maximal evacuation stage and three intermediate stages during the replenishment phase. The disc is found to undergo rather dramatic spectral changes during the evolution, emitting mainly in the 1-10 keV band during outburst and in the 0.1-1 keV band off-outburst. Local spectra, although different in shape from a blackbody at the disc effective temperature, may be characterized in terms of a hardening factor ff. We have found that ff is rather constant both in radius and in time, with a typical value ∌1.65\sim 1.65.Comment: 10 pages Latex with 11 ps figures. Accepted for publication in MNRA

    On the migration-induced resonances in a system of two planets with masses in the Earth mass range

    Full text link
    We investigate orbital resonances expected to arise when a system of two planets, with masses in the range 1-4 Earth masses, undergoes convergent migration while embedded in a section of gaseous disc where the flow is laminar. We consider surface densities corresponding to 0.5-4 times that expected for a minimum mass solar nebula at 5.2 AU. Using hydrodynamic simulations we find that when the configuration is such that convergent migration occurs the planets can become locked in a first order commensurability for which the period ratio is (p+1)/p with p being an integer and migrate together maintaining it for many orbits. Relatively rapid convergent migration as tends to occur for disparate masses, results in commensurabilities with p larger than 2. However, in these cases the dynamics is found to have a stochastic character. When the convergent migration is slower, such as occurs in the equal mass case, lower p commensurabilities such as 3:2 are attained which show much greater stability. In one already known example of a system with nearly equal masses in the several Earth mass range (planets around pulsar PSR B1257+12) the two largest planets are intriguingly close to a 3:2 commensurability. A very similar behaviour is obtained when the systems are modeled using an N body code with simple prescriptions for the disc planet interaction. Using that, we found that an 8:7 resonance established in a hydrodynamic simulation run for 10-100 thousand orbits could be maintained for more than million orbits. Resonant capture leads to a rise in eccentricities that can be predicted using a simple analytic model constructed in this paper. We find that the system with the 8:7 commensurability is fully consistent with this prediction.Comment: 26 pages with 19 low resolution Postscript figures, abstract abridged, accepted for publication in MNRA

    Two-dimensional radiation-hydrodynamic model for limit-cycle oscillations of luminous accretion disks

    Full text link
    We investigate the time evolution of luminous accretion disks around black holes, conducting the two-dimensional radiation-hydrodynamic simulations. We adopt the alpha prescription for the viscosity. The radial-azimuthal component of viscous stress tensor is assumed to be proportional to the total pressure in the optically thick region, while the gas pressure in the optically thin regime. The viscosity parameter, alpha, is taken to be 0.1. We find the limit-cycle variation in luminosity between high and low states. When we set the mass input rate from the outer disk boundary to be 100 L_E/c^2, the luminosity suddenly rises from 0.3L_E to 2L_E, where L_E is the Eddington luminosity. It decays after retaining high value for about 40 s. Our numerical results can explain the variation amplitude and duration of the recurrent outbursts observed in microquasar, GRS 1915+105. We show that the multi-dimensional effects play an important role in the high-luminosity state. In this state, the outflow is driven by the strong radiation force, and some part of radiation energy dissipated inside the disk is swallowed by the black hole due to the photon-trapping effects. This trapped luminosity is comparable to the disk luminosity. We also calculate two more cases: one with a much larger accretion rate than the critical value for the instability and the other with the viscous stress tensor being proportional to the gas pressure only even when the radiation pressure is dominant. We find no quasi-periodic light variations in these cases. This confirms that the limit-cycle behavior found in the simulations is caused by the disk instability.Comment: 6 pages, 4 figures, accepted for publication in ApJ (ApJ 01 April 2006, v640, 2 issue

    Conditions for the occurrence of mean-motion resonances in a low mass planetary system

    Full text link
    The dynamical interactions that occur in newly formed planetary systems may reflect the conditions occurring in the protoplanetary disk out of which they formed. With this in mind, we explore the attainment and maintenance of orbital resonances by migrating planets in the terrestrial mass range. Migration time scales varying between millions of years and thousands of years are considered. In the former case, for which the migration time is comparable to the lifetime of the protoplanetary gas disk, a 2:1 resonance may be formed. In the latter, relatively rapid migration regime commensurabilities of high degree such as 8:7 or 11:10 may be formed. However, in any one large-scale migration several different commensurabilities may be formed sequentially, each being associated with significant orbital evolution. We also use a simple analytic theory to develop conditions for first order commensurabilities to be formed. These depend on the degree of the commensurability, the imposed migration and circularization rates, and the planet mass ratios. These conditions are found to be consistent with the results of our simulations.Comment: 11 pages with 4 figures, pdflatex, to appear in the proceedings of the conference "Extra-solar Planets in Multi-body Systems: Theory and Observations"; eds. K. Gozdziewski, A. Niedzielski and J. Schneider, EAS Publication Serie