290 research outputs found

    Supercatalysis

    Get PDF
    We show that entanglement-assisted transformations of bipartite entangled states can be more efficient than catalysis [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566 (1999)}, i.e., given two incomparable bipartite states not only can the transformation be enabled by performing collective operations with an auxiliary entangled state, but the entanglement of the auxiliary state itself can be enhanced. We refer to this phenomenon as supercatalysis. We provide results on the properties of supercatalysis and its relationship with catalysis. In particular, we obtain a useful necessary and sufficient condition for catalysis, provide several sufficient conditions for supercatalysis and study the extent to which entanglement of the auxiliary state can be enhanced via supercatalysis.Comment: Latex, 5 page

    Detecting mixedness of qutrit systems using the uncertainty relation

    Full text link
    We show that the uncertainty relation as expressed in the Robertson-Schrodinger generalized form can be used to detect the mixedness of three-level quantum systems in terms of measureable expectation values of suitably chosen observables when prior knowledge about the basis of the given state is known. In particular, we demonstrate the existence of observables for which the generalized uncertainty relation is satisfied as an equality for pure states and a strict inequality for mixed states corresponding to single as well as bipartite sytems of qutrits. Examples of such observables are found for which the magnitude of uncertainty is proportional to the linear entropy of the system, thereby providing a method for measuring mixedness.Comment: 7 pages, 2 figure, Eqs.(10) and (14) are corrected, and results and conclusions are unchange

    Teleportation and Secret Sharing with Pure Entangled States

    Get PDF
    We present two optimal methods of teleporting an unknown qubit using any pure entangled state. We also discuss how such methods can also have succesful application in quantum secret sharing with pure multipartite entangled states.Comment: Latex, 13 pages, submitted to PRA. One sub section already appeared in the archive: quant-ph /990701

    Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox

    Get PDF
    The concept of steering was introduced by Schrödinger in 1935 as a generalization of the Einstein-Podolsky-Rosen paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational definition, from which we prove (by considering Werner states and isotropic states) that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. For arbitrary bipartite Gaussian states we derive a linear matrix inequality that decides the question of steerability via Gaussian measurements, and we relate this to the original Einstein-Podolsky-Rosen paradox

    On the origin of noisy states whose teleportation fidelity can be enhanced through dissipation

    Full text link
    Recently Badziag \emph{et al.} \cite{badziag} obtained a class of noisy states whose teleportation fidelity can be enhanced by subjecting one of the qubits to dissipative interaction with the environment via amplitude damping channel (ADC). We show that such noisy states result while sharing the states (| \Phi ^{\pm}> =\frac{1}{\sqrt{2}}(| 00> \pm | 11>)) across ADC. We also show that under similar dissipative interactions different Bell states give rise to noisy entangled states that are qualitatively very different from each other in the sense, only the noisy entangled states constructed from the Bell states (| \Phi ^{\pm}>) can \emph{}be made better sometimes by subjecting the unaffected qubit to a dissipative interaction with the environment. Importantly if the noisy state is non teleporting then it can always be made teleporting with this prescription. We derive the most general restrictions on improvement of such noisy states assuming that the damping parameters being different for both the qubits. However this curious prescription does not work for the noisy entangled states generated from (| \Psi ^{\pm}> =\frac{1}{\sqrt{2}}(| 01> \pm | 10>)). This shows that an apriori knowledge of the noisy channel might be helpful to decide which Bell state needs to be shared between Alice and Bob. \emph{}Comment: Latex, 18 pages: Revised version with a new result. Submitted to PR

    A tensor instability in the Eddington inspired Born-Infeld Theory of Gravity

    Full text link
    In this paper we consider an extension to Eddington's proposal for the gravitational action. We study tensor perturbations of a homogeneous and isotropic space-time in the Eddington regime, where modifications to Einstein gravity are strong. We find that the tensor mode is linearly unstable deep in the Eddington regime and discuss its cosmological implications.Comment: 5 pages, approved by Phys. Rev. D, additional references and minor modification

    Statistical properties of one dimensional Bose gas

    Full text link
    Monte Carlo method within, so called, classical fields approximation is applied to one dimensional weakly interacting repulsive Bose gas trapped in a harmonic potential. Equilibrium statistical properties of the condensate are calculated within a canonical ensemble. We also calculate experimentally relevant low order correlation functions of the whole gas

    Non-locality of Foldy-Wouthuysen and related transformations for the Dirac equation

    Full text link
    Non-localities of Foldy-Wouthuysen and related transformations, which are used to separate positive and negative energy states in the Dirac equation, are investigated. Second moments of functional kernels generated by the transformations are calculated, the transformed functions and their variances are computed. It is shown that all the transformed quantities are smeared in the coordinate space by the amount comparable to the Compton wavelength λc=ℏ/mc\lambda_c=\hbar/mc.Comment: 7 pages, two figure

    Eddington-Born-Infeld action for dark energy and dark matter

    Full text link
    We argue that Einstein gravity coupled to a Born-Infeld theory provides an attractive candidate to represent dark matter and dark energy. For cosmological models, the Born-Infeld field has an equation of state which interpolates between matter, w=0 (small times), and a cosmological constant w=-1 (large times). On galactic scales, the Born-Infeld field predicts asymptotically flat rotation curves.Comment: A sign mistake in section on galactic scales is pointed out. This sign invalidates the content of that section. See comment on manuscrip

    Irreversible thermodynamics of open chemical networks I: Emergent cycles and broken conservation laws

    Get PDF
    In this and a companion paper we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated to nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a+b=sYa + b = s^Y between the number of fundamental affinities aa, that of broken conservation laws bb and the number of chemostats sYs^Y. We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction and of thermodynamic constraints for network reconstruction.Comment: 18 page
    • …
    corecore