576 research outputs found

    The Social Network of Contemporary Popular Musicians

    Full text link
    In this paper we analyze two social network datasets of contemporary musicians constructed from allmusic.com (AMG), a music and artists' information database: one is the collaboration network in which two musicians are connected if they have performed in or produced an album together, and the other is the similarity network in which they are connected if they where musically similar according to music experts. We find that, while both networks exhibit typical features of social networks such as high transitivity, several key network features, such as degree as well as betweenness distributions suggest fundamental differences in music collaborations and music similarity networks are created.Comment: 7 pages, 2 figure

    Vertex similarity in networks

    Full text link
    We consider methods for quantifying the similarity of vertices in networks. We propose a measure of similarity based on the concept that two vertices are similar if their immediate neighbors in the network are themselves similar. This leads to a self-consistent matrix formulation of similarity that can be evaluated iteratively using only a knowledge of the adjacency matrix of the network. We test our similarity measure on computer-generated networks for which the expected results are known, and on a number of real-world networks

    The effect of aging on network structure

    Full text link
    In network evolution, the effect of aging is universal: in scientific collaboration network, scientists have a finite time span of being active; in movie actors network, once popular stars are retiring from stage; devices on the Internet may become outmoded with techniques developing so rapidly. Here we find in citation networks that this effect can be represented by an exponential decay factor, e‚ąíő≤ŌĄe^{-\beta \tau}, where ŌĄ\tau is the node age, while other evolving networks (the Internet for instance) may have different types of aging, for example, a power-law decay factor, which is also studied and compared. It has been found that as soon as such a factor is introduced to the Barabasi-Albert Scale-Free model, the network will be significantly transformed. The network will be clustered even with infinitely large size, and the clustering coefficient varies greatly with the intensity of the aging effect, i.e. it increases linearly with ő≤\beta for small values of ő≤\beta and decays exponentially for large values of ő≤\beta . At the same time, the aging effect may also result in a hierarchical structure and a disassortative degree-degree correlation. Generally the aging effect will increase the average distance between nodes, but the result depends on the type of the decay factor. The network appears like a one-dimensional chain when exponential decay is chosen, but with power-law decay, a transformation process is observed, i.e., from a small-world network to a hypercubic lattice, and to a one-dimensional chain finally. The disparities observed for different choices of the decay factor, in clustering, average node distance and probably other aspects not yet identified, are believed to bear significant meaning on empirical data acquisition.Comment: 8 pages, 9 figures,V2, accepted for publication in Phys. Rev.

    Parameter estimators of random intersection graphs with thinned communities

    Full text link
    This paper studies a statistical network model generated by a large number of randomly sized overlapping communities, where any pair of nodes sharing a community is linked with probability qq via the community. In the special case with q=1q=1 the model reduces to a random intersection graph which is known to generate high levels of transitivity also in the sparse context. The parameter qq adds a degree of freedom and leads to a parsimonious and analytically tractable network model with tunable density, transitivity, and degree fluctuations. We prove that the parameters of this model can be consistently estimated in the large and sparse limiting regime using moment estimators based on partially observed densities of links, 2-stars, and triangles.Comment: 15 page

    Distance, dissimilarity index, and network community structure

    Full text link
    We address the question of finding the community structure of a complex network. In an earlier effort [H. Zhou, {\em Phys. Rev. E} (2003)], the concept of network random walking is introduced and a distance measure defined. Here we calculate, based on this distance measure, the dissimilarity index between nearest-neighboring vertices of a network and design an algorithm to partition these vertices into communities that are hierarchically organized. Each community is characterized by an upper and a lower dissimilarity threshold. The algorithm is applied to several artificial and real-world networks, and excellent results are obtained. In the case of artificially generated random modular networks, this method outperforms the algorithm based on the concept of edge betweenness centrality. For yeast's protein-protein interaction network, we are able to identify many clusters that have well defined biological functions.Comment: 10 pages, 7 figures, REVTeX4 forma

    Constrained spin dynamics description of random walks on hierarchical scale-free networks

    Full text link
    We study a random walk problem on the hierarchical network which is a scale-free network grown deterministically. The random walk problem is mapped onto a dynamical Ising spin chain system in one dimension with a nonlocal spin update rule, which allows an analytic approach. We show analytically that the characteristic relaxation time scale grows algebraically with the total number of nodes NN as T‚ąľNzT \sim N^z. From a scaling argument, we also show the power-law decay of the autocorrelation function C_{\bfsigma}(t)\sim t^{-\alpha}, which is the probability to find the Ising spins in the initial state {\bfsigma} after tt time steps, with the state-dependent non-universal exponent őĪ\alpha. It turns out that the power-law scaling behavior has its origin in an quasi-ultrametric structure of the configuration space.Comment: 9 pages, 6 figure

    Effect of correlations on network controllability

    Get PDF
    A dynamical system is controllable if by imposing appropriate external signals on a subset of its nodes, it can be driven from any initial state to any desired state in finite time. Here we study the impact of various network characteristics on the minimal number of driver nodes required to control a network. We find that clustering and modularity have no discernible impact, but the symmetries of the underlying matching problem can produce linear, quadratic or no dependence on degree correlation coefficients, depending on the nature of the underlying correlations. The results are supported by numerical simulations and help narrow the observed gap between the predicted and the observed number of driver nodes in real networks

    Scale free networks from a Hamiltonian dynamics

    Full text link
    Contrary to many recent models of growing networks, we present a model with fixed number of nodes and links, where it is introduced a dynamics favoring the formation of links between nodes with degree of connectivity as different as possible. By applying a local rewiring move, the network reaches equilibrium states assuming broad degree distributions, which have a power law form in an intermediate range of the parameters used. Interestingly, in the same range we find non-trivial hierarchical clustering.Comment: 4 pages, revtex4, 5 figures. v2: corrected statements about equilibriu

    A simple physical model for scaling in protein-protein interaction networks

    Full text link
    It has recently been demonstrated that many biological networks exhibit a scale-free topology where the probability of observing a node with a certain number of edges (k) follows a power law: i.e. p(k) ~ k^-g. This observation has been reproduced by evolutionary models. Here we consider the network of protein-protein interactions and demonstrate that two published independent measurements of these interactions produce graphs that are only weakly correlated with one another despite their strikingly similar topology. We then propose a physical model based on the fundamental principle that (de)solvation is a major physical factor in protein-protein interactions. This model reproduces not only the scale-free nature of such graphs but also a number of higher-order correlations in these networks. A key support of the model is provided by the discovery of a significant correlation between number of interactions made by a protein and the fraction of hydrophobic residues on its surface. The model presented in this paper represents the first physical model for experimentally determined protein-protein interactions that comprehensively reproduces the topological features of interaction networks. These results have profound implications for understanding not only protein-protein interactions but also other types of scale-free networks.Comment: 50 pages, 17 figure
    • ‚Ķ