18,026 research outputs found
Are optically-selected QSO catalogs biased ?
A thorough study of QSO-galaxy correlations has been done on a region close
to the North Galactic Pole using a complete subsample of the optically selected
CFHT/MMT QSO survey and the galaxy catalog of Odewahn and Aldering (1995).
Although a positive correlation between bright QSOs and galaxies is expected
because of the magnification bias effect, none is detected. On the contrary,
there is a significant (>99.6%) anticorrelation between z<1.6 QSOs and red
galaxies on rather large angular distances. This anticorrelation is much less
pronounced for high redshift z>1.6 QSOs, which seems to exclude dust as a cause
of the QSO underdensity. This result suggests that the selection process
employed in the CFHT/MMT QSO survey is losing up to 50% of low redshift z<1.6
QSOs in regions of high galaxy density. The incompleteness in the whole z<1.6
QSO sample may reach 10% and have important consequences in the estimation of
QSO evolution and the QSO autocorrelation function.Comment: 17 pages LaTeX (aasms4), plus 6 EPS figures. To be published in the
Astronomical Journa
R-Band Imaging of Fields Around 1<z<2 Radiogalaxies
We have taken deep -band images of fields around five radiogalaxies:
0956+47, 1217+36, 3C256, 3C324 and 3C294 with . 0956+47 is found to
show a double nucleus. Our data on 1217+36 suggest the revision of its
classification as a radiogalaxy. We found a statistically significant excess of
bright () galaxies on scales of 2 arcmin around the radiogalaxies
(which have ) in our sample. The excess has been determined
empirically to be at level. It is remarkable that this excess
is not present for galaxies within the same area, suggesting that
the excess is not physically associated to the galaxies but due to intervening
groups and then related to gravitational lensing.Comment: 20 pages, uuencoded compressed PostScript including tables. Figures
available upon request. To appear in the March 1995 issue of The Astronomical
Journa
Cross-correlation of the CMB and radio galaxies in real, harmonic and wavelet spaces: detection of the integrated Sachs-Wolfe effect and dark energy constraints
We report the first detection of the ISW effect in wavelet space, at scales
in the sky around 7 degrees with a significance of around 3.3 sigma, by
cross-correlating the WMAP first-year data and the NRAO VLA Sky Survey (NVSS).
In addition, we present a detailed comparison among the capabilities of three
different techniques for two different objectives: to detect the ISW and to put
constraints in the nature of the dark energy. The three studied techniques are:
the cross-angular power spectrum (CAPS, harmonic space), the correlation
function (CCF, real space) and the covariance of the Spherical Mexican Hat
Wavelet (SMHW) coefficients (CSMHW, wavelet space). We prove that the CSMHW is
expected to provide a higher detection of the ISW effect for a certain scale.
This prediction has been corroborated by the analysis of the data. The SMHW
analysis shows that the cross-correlation signal is caused neither by
systematic effects nor foreground contamination. However, by taking into
account the information encoded in all the multipoles/scales/angles, the CAPS
provides slightly better constraints than the SMHW in the cosmological
parameters that define the nature of the dark energy. The limits provided by
the CCF are wider than for the other two methods. Two different cases have been
studied: 1) a flat Lambda-CDM universe and 2) a flat universe with an equation
of state parameter different from -1. In the first case, the CAPS provides (for
a bias value of b = 1.6) 0.59 < Lambda density < 0.84 (at 1 sigma CL).
Moreover, the CAPS rejects the range Lambda density < 0.1 at 3.5 sigma, which
is the highest detection of the dark energy reported up to date. In the second
case, the CAPS gives 0.50 < dark energy density < 0.82 and -1.16 < w < 0.43 (at
1 sigma CL).Comment: 12 pages, 7 figures, accepted for publication in MNRAS. Analysis
redone. Changes in the estimation of the cosmological parametres. Additional
comparison between wavelets and more standard technique
The effect of the linear term on the wavelet estimator of primordial non-Gaussianity
In this work we present constraints on different shapes of primordial
non-Gaussianity using the Wilkinson Microwave Anisotropy Probe (WMAP) 7-year
data and the spherical Mexican hat wavelet fnl estimator including the linear
term correction. In particular we focus on the local, equilateral and
orthogonal shapes. We first analyse the main statistical properties of the
wavelet estimator and show the conditions to reach optimality. We include the
linear term correction in our estimators and compare the estimates with the
values already published using only the cubic term. The estimators are tested
with realistic WMAP simulations with anisotropic noise and the WMAP KQ75 sky
cut. The inclusion of the linear term correction shows a negligible improvement
(< 1 per cent) in the error-bar for any of the shapes considered. The results
of this analysis show that, in the particular case of the wavelet estimator,
the optimality for WMAP anisotropy levels is basically achieved with the mean
subtraction and in practical terms there is no need of including a linear term
once the mean has been subtracted. Our best estimates are now: local fnl = 39.0
+/ 21.4, equilateral fnl = -62.8 +/- 154.0 and orthogonal fnl = -159.8 +/-
115.1 (all cases 68 per cent CL). We have also computed the expected linear
term correction for simulated Planck maps with anisotropic noise at 143 GHz
following the Planck Sky Model and including a mask. The improvement achieved
in this case for the local fnl error-bar is also negligible (0.4 per cent).Comment: 8 pages, 5 figures, 4 tables. Minor revision, one figure added,
accepted for publication in MNRA
Geometrical estimators as a test of Gaussianity in the CMB
We investigate the power of geometrical estimators on detecting
non-Gaussianity in the cosmic microwave background. In particular the number,
eccentricity and Gaussian curvature of excursion sets above (and below) a
threshold are studied. We compare their different performance when applied to
non-Gaussian simulated maps of small patches of the sky, which take into
account the angular resolution and instrumental noise of the Planck satellite.
These non-Gaussian simulations are obtained as perturbations of a Gaussian
field in two different ways which introduce a small level of skewness or
kurtosis in the distribution. A comparison with a classical estimator, the
genus, is also shown. We find that the Gaussian curvature is the best of our
estimators in all the considered cases. Therefore we propose the use of this
quantity as a particularly useful test to look for non-Gaussianity in the CMB.Comment: 9 pages, 6 postscript figures, submitted to MNRA
Steerable wavelet analysis of CMB structures alignment
This paper reviews the application of a novel methodology for analysing the
isotropy of the universe by probing the alignment of local structures in the
CMB. The strength of the proposed methodology relies on the steerable wavelet
filtering of the CMB signal. One the one hand, the filter steerability renders
the computation of the local orientation of the CMB features affordable in
terms of computation time. On the other hand, the scale-space nature of the
wavelet filtering allows to explore the alignment of the local structures at
different scales, probing possible different phenomena. We present the WMAP
first-year data analysis recently performed by the same authors (Wiaux et al.),
where an extremely significant anisotropy was found. In particular, a preferred
plane was detected, having a normal direction with a northern end position
close to the northern end of the CMB dipole axis. In addition, a most preferred
direction was found in that plane, with a northern end direction very close to
the north ecliptic pole. This result synthesised for the first time previously
reported anomalies identified in the direction of the dipole and the ecliptic
poles axes. In a forthcoming paper (Vielva et al.), we have extended our
analysis to the study of individual frequency maps finding first indications
for discarding foregrounds as the origin of the anomaly. We have also tested
that the preferred orientations are defined by structures homogeneously
distributed in the sky, rather than from localised regions. We have also
analysed the WMAP 3-year data, finding the same anomaly pattern, although at a
slightly lower significance level.Comment: 14 pages, 8 figures. Proceedings of the Fundamental Physics With CMB
workshop, UC Irvine, March 23-25, 2006, to be published in New Astronomy
Review
Quasar-galaxy associations revisited
Gravitational lensing predicts an enhancement of the density of bright,
distant QSOs around foreground galaxies. We measure this QSO-galaxy correlation
w_qg for two complete samples of radio-loud quasars, the southern 1Jy and
Half-Jansky samples. The existence of a positive correlation between z~1
quasars and z~0.15 galaxies is confirmed at a p=99.0% significance level
(>99.9%) if previous measurements on the northern hemisphere are included). A
comparison with the results obtained for incomplete quasar catalogs (e.g. the
Veron-Cetty and Veron compilation) suggests the existence of an `identification
bias', which spuriously increases the estimated amplitude of the quasar-galaxy
correlation for incomplete samples. This effect may explain many of the
surprisingly strong quasar-galaxy associations found in the literature.
Nevertheless, the value of w_qg that we measure in our complete catalogs is
still considerably higher than the predictions from weak lensing. We consider
two effects which could help to explain this discrepancy: galactic dust
extinction and strong lensing.Comment: 9 pages, 6 figures, MNRAS accepte
- …