602 research outputs found

    Revealing the X-ray source in IRAS 13224-3809 through flux-dependent reverberation lags

    Get PDF
    IRAS 13224-3809 was observed in 2011 for 500 ks with the XMM-Newton observatory. We detect highly significant X-ray lags between soft (0.3 - 1 keV) and hard (1.2 - 5 keV) energies. The hard band lags the soft at low frequencies (i.e. hard lag), while the opposite (i.e. soft lag) is observed at high frequencies. In this paper, we study the lag during flaring and quiescent periods. We find that the frequency and absolute amplitude of the soft lag is different during high-flux and low-flux periods. During the low flux intervals, the soft lag is detected at higher frequencies and with smaller amplitude. Assuming that the soft lag is associated with the light travel time between primary and reprocessed emission, this behaviour suggests that the X-ray source is more compact during low-flux intervals, and irradiates smaller radii of the accretion disc (likely because of light bending effects). We continue with an investigation of the lag dependence on energy, and find that isolating the low-flux periods reveals a strong lag signature at the Fe K line energy, similar to results found using 1.3 Ms of data on another well known Narrow-Line Seyfert I galaxy, 1H0707-495.Comment: 6 pages, 8 figures, accepted for publication in MNRA

    The curious time lags of PG 1244+026: Discovery of the iron K reverberation lag

    Get PDF
    High-frequency iron K reverberation lags, where the red wing of the line responds before the line centroid, are a robust signature of relativistic reflection off the inner accretion disc. In this letter, we report the discovery of the Fe K lag in PG 1244+026 from ~120 ks of data (1 orbit of the XMM-Newton telescope). The amplitude of the lag with respect to the continuum is 1000 s at a frequency of ~1e-4 Hz. We also find a possible frequency-dependence of the line: as we probe higher frequencies (i.e. shorter timescales from a smaller emitting region) the Fe K lag peaks at the red wing of the line, while at lower frequencies (from a larger emitting region) we see the dominant reflection lag from the rest frame line centroid. The mean energy spectrum shows a strong soft excess, though interestingly, there is no indication of a soft lag. Given that this source has radio emission and it has little reported correlated variability between the soft excess and the hard band, we explore one possible explanation in which the soft excess in this source is dominated by the steep power-law like emission from a jet, and that a corona (or base of the jet) irradiates the inner accretion disc, creating the blurred reflection features evident in the spectrum and the lag. General Relativistic ray-tracing models fit the Fe K lag well, with the best-fit giving a compact X-ray source at a height of 5 gravitational radii and a black hole mass of 1.3e7 Msun.Comment: 6 pages, 6 figures, resubmitted to MNRAS after moderate revisions. This paper focuses on the discovery of the Fe K reverberation lag in PG 1244+026. We point the interested reader to Alston, Done & Vaughan (See today: arXiv:submit/0851673), which focuses on the soft lags in this sourc

    An X-ray-UV correlation in Cen X-4 during quiescence

    Get PDF
    Quiescent emission from the neutron star low-mass X-ray binary Cen X-4 is seen to be variable on timescales from hundreds of seconds to years, suggesting that at least in this object, low-level accretion is important during quiescence. Here we present results from recent XMM-Newton and Swift observations of Cen X-4, where the X-ray flux (0.5 - 10 keV) varies by a factor of 6.5 between the brightest and faintest states. We find a positive correlation between the X-ray flux and the simultaneous near-UV flux, where as there is no significant correlation between the X-ray and simultaneous optical (V, B) fluxes. This suggests that while the X-ray and UV emitting regions are somehow linked, the optical region originates elsewhere. Comparing the luminosities, it is plausible that the UV emission originates due to reprocessing of the X-ray flux by the accretion disk, with the hot inner region of the disk being a possible location for the UV emitting region. The optical emission, however, could be dominated by the donor star. The X-ray/UV correlation does not favour the accretion stream-impact point as the source of the UV emission.Comment: 8 pages, 3 figures, accepted for publication in MNRA

    On Neutral Absorption and Spectral Evolution in X-ray Binaries

    Get PDF
    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low energy spectrum of X-ray binaries should properly be attributed to evolution in the source spectrum. We discuss our results in the context of X-ray binary spectroscopy with current and future X-ray missions.Comment: Accepted for publication in ApJ Letter

    Swift monitoring of Cygnus X-2: investigating the NUV-X-ray connection

    Full text link
    The neutron star X-ray binary (NSXRB) Cygnus X-2 was observed by the Swift satellite 51 times over a 4 month period in 2008 with the XRT, UVOT, and BAT instruments. During this campaign, we observed Cyg X-2 in all three branches of the Z track (horizontal, normal, and flaring branches). We find that the NUV emission is uncorrelated with the soft X-ray flux detected with the XRT, and is anticorrelated with the BAT X-ray flux and the hard X-ray color. The observed anticorrelation is inconsistent with simple models of reprocessing as the source of the NUV emission. The anticorrelation may be a consequence of the high inclination angle of Cyg X-2, where NUV emission is preferentially scattered by a corona that expands as the disk is radiatively heated. Alternatively, if the accretion disk thickens as Cyg X-2 goes down the normal branch toward the flaring branch, this may be able to explain the observed anticorrelation. In these models the NUV emission may not be a good proxy for mË™\dot m in the system. We also discuss the implications of using Swift/XRT to perform spectral modeling of the continuum emission of NSXRBs.Comment: 10 pages, 8 figures. ApJ Accepte

    X-ray reverberation around accreting black holes

    Full text link
    Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and corresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We consider how these signals can be studied in the future to carry out X-ray reverberation mapping of the regions closest to black holes.Comment: 72 pages, 32 figures. Accepted for publication in The Astronomy and Astrophysics Review. Corrected for mostly minor typos, but in particular errors are corrected in the denominators of the covariance and rms spectrum error equations (Eqn. 14 and 15

    Relativistic Disk Reflection in the Neutron Star X-ray Binary XTE J1709-267 with NuSTAR

    Get PDF
    We perform the first reflection study of the soft X-ray transient and Type 1 burst source XTE J1709-267 using NuSTAR observations during its 2016 June outburst. There was an increase in flux near the end of the observations, which corresponds to an increase from ∼\sim0.04 LEdd_{\mathrm{Edd}} to ∼\sim0.06 LEdd_{\mathrm{Edd}} assuming a distance of 8.5 kpc. We have separately examined spectra from the low and high flux intervals, which were soft and show evidence of a broad Fe K line. Fits to these intervals with relativistic disk reflection models have revealed an inner disk radius of 13.8−1.8+3.0 Rg13.8_{-1.8}^{+3.0}\ R_{g} (where Rg=GM/c2R_{g} = GM/c^{2}) for the low flux spectrum and 23.4−5.4+15.6 Rg23.4_{-5.4}^{+15.6}\ R_{g} for the high flux spectrum at the 90\% confidence level. The disk is likely truncated by a boundary layer surrounding the neutron star or the magnetosphere. Based on the measured luminosity and using the accretion efficiency for a disk around a neutron star, we estimate that the theoretically expected size for the boundary layer would be ∼0.9−1.1 Rg\sim0.9-1.1 \ R_{g} from the neutron star's surface, which can be increased by spin or viscosity effects. Another plausible scenario is that the disk could be truncated by the magnetosphere. We place a conservative upper limit on the strength of the magnetic field at the poles, assuming a∗=0a_{*}=0 and MNS=1.4 M⊙M_{NS}=1.4\ M_{\odot}, of B≤0.75−3.70×109B\leq0.75-3.70\times10^{9} G, though X-ray pulsations have not been detected from this source.Comment: Accepted for publication in ApJ, 5 pages, 4 figures, 1 table. arXiv admin note: text overlap with arXiv:1701.0177
    • …
    corecore