3,364 research outputs found

    Muon identification for the ATLAS experiment

    Get PDF
    The ATLAS experiment will efficiently reconstruct and identify muons, using data recorded by different sub-detectors. Muon tracks will be reconstructed in the inner tracking system and in the outermost muon spectrometer, exploiting both the solenoidal and the toroidal magnetic fields for momentum measurement; the corresponding energy deposits in the calorimeters will also be measured. Here we present the algorithms developed to combine these reconstructed quantities, in order to obtain a robust and precise muon identification capability. The peculiarities of each possible combined reconstruction technique will be discussed and the corresponding performance, evaluated on simulated samples, will be reported

    Blood ties: ABO is a trans-species polymorphism in primates

    Full text link
    The ABO histo-blood group, the critical determinant of transfusion incompatibility, was the first genetic polymorphism discovered in humans. Remarkably, ABO antigens are also polymorphic in many other primates, with the same two amino acid changes responsible for A and B specificity in all species sequenced to date. Whether this recurrence of A and B antigens is the result of an ancient polymorphism maintained across species or due to numerous, more recent instances of convergent evolution has been debated for decades, with a current consensus in support of convergent evolution. We show instead that genetic variation data in humans and gibbons as well as in Old World Monkeys are inconsistent with a model of convergent evolution and support the hypothesis of an ancient, multi-allelic polymorphism of which some alleles are shared by descent among species. These results demonstrate that the ABO polymorphism is a trans-species polymorphism among distantly related species and has remained under balancing selection for tens of millions of years, to date, the only such example in Hominoids and Old World Monkeys outside of the Major Histocompatibility Complex.Comment: 45 pages, 4 Figures, 4 Supplementary Figures, 5 Supplementary Table

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC