159 research outputs found
Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation
Applying a magnetic-field gradient to a trapped ion allows long-wavelength radiation to produce a mechanical force on the ion's motion when internal transitions are driven. We demonstrate such a coupling using a single trapped Yb+171 ion and use it to produce entanglement between the spin and motional state, an essential step toward using such a field gradient to implement multiqubit operations
Ground-state cooling of a trapped ion Using long-wavelength radiation
We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of n¯=0.13(4) after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the |n=0⟩ and |n=1⟩ Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost 2 orders of magnitude compared with our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system
Floquet Analysis of Atom Optics Tunneling Experiments
Dynamical tunneling has been observed in atom optics experiments by two
groups. We show that the experimental results are extremely well described by
time-periodic Hamiltonians with momentum quantized in units of the atomic
recoil. The observed tunneling has a well defined period when only two Floquet
states dominate the dynamics. Beat frequencies are observed when three Floquet
states dominate. We find frequencies which match those observed in both
experiments. The dynamical origin of the dominant Floquet states is identified.Comment: Accepted in Physical Review
Efficient preparation and detection of microwave dressed-state qubits and qutrits with trapped ions
We demonstrate a method for preparing and detecting all eigenstates of a three-level microwave dressed system with a single trapped ion. The method significantly reduces the experimental complexity of gate operations with dressed-state qubits, as well as allowing all three of the dressed states to be prepared and detected, thereby providing access to a qutrit that is well protected from magnetic field noise. In addition, we demonstrate individual addressing of the clock transitions in two ions using a strong static magnetic field gradient, showing that our method can be used to prepare and detect microwave dressed states in a string of ions when performing multi-ion quantum operations with microwave and radio frequency fields. The individual addressability of clock transitions could also allow for the control of pairwise interaction strengths between arbitrary ions in a string using lasers
Kicked Bose-Hubbard systems and kicked tops -- destruction and stimulation of tunneling
In a two-mode approximation, Bose-Einstein condensates (BEC) in a double-well
potential can be described by a many particle Hamiltonian of Bose-Hubbard type.
We focus on such a BEC whose interatomic interaction strength is modulated
periodically by -kicks which represents a realization of a kicked top.
In the (classical) mean-field approximation it provides a rich mixed phase
space dynamics with regular and chaotic regions. By increasing the
kick-strength a bifurcation leads to the appearance of self-trapping states
localized on regular islands. This self-trapping is also found for the many
particle system, however in general suppressed by coherent many particle
tunneling oscillations. The tunneling time can be calculated from the
quasi-energy splitting of the corresponding Floquet states. By varying the
kick-strength these quasi-energy levels undergo both avoided and even actual
crossings. Therefore stimulation or complete destruction of tunneling can be
observed for this many particle system
Coherent atomic beam splitter using transients of a chaotic system
A coherent atomic beam splitter can be realized using the transient dynamics of a chaotic system. We have experimentally observed such an effect using ultracold rubidium atoms. Our experimental results are in good agreement with numerical simulations of the Schrödinger equation for the syste
Phase Control of Nonadiabaticity-induced Quantum Chaos in An Optical Lattice
The qualitative nature (i.e. integrable vs. chaotic) of the translational
dynamics of a three-level atom in an optical lattice is shown to be
controllable by varying the relative laser phase of two standing wave lasers.
Control is explained in terms of the nonadiabatic transition between optical
potentials and the corresponding regular to chaotic transition in mixed
classical-quantum dynamics. The results are of interest to both areas of
coherent control and quantum chaos.Comment: 3 figures, 4 pages, to appear in Physical Review Letter
Nonlinearity effects in the kicked oscillator
The quantum kicked oscillator is known to display a remarkable richness of
dynamical behaviour, from ballistic spreading to dynamical localization. Here
we investigate the effects of a Gross Pitaevskii nonlinearity on quantum
motion, and provide evidence that the qualitative features depend strongly on
the parameters of the system.Comment: 4 pages, 5 figure
Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps
We consider the problem of cold atomic collisions in tight traps, where the
absolute scattering length may be larger than the trap size. As long as the
size of the trap ground state is larger than a characteristic length of the van
der Waals potential, the energy eigenvalues can be computed self-consistently
from the scattering amplitude for untrapped atoms. By comparing with the exact
numerical eigenvalues of the trapping plus interatomic potentials, we verify
that our model gives accurate eigenvalues up to milliKelvin energies for single
channel s-wave scattering of Na atoms in an isotropic harmonic trap,
even when outside the Wigner threshold regime. Our model works also for
multi-channel scattering, where the scattering length can be made large due to
a magnetically tunable Feshbach resonance.Comment: 7 pages, 4 figures (PostScript), submitted to Physical Review
- …
