2,169 research outputs found

    Spin entanglement, decoherence and Bohm's EPR paradox

    Get PDF
    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm’s spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies η > 1/3 and η > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons

    Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox

    Get PDF
    We formally link the concept of steering (a concept created by Schrodinger but only recently formalised by Wiseman, Jones and Doherty [Phys. Rev. Lett. 98, 140402 (2007)] and the criteria for demonstrations of Einstein-Podolsky-Rosen (EPR) paradox introduced by Reid [Phys. Rev. A, 40, 913 (1989)]. We develop a general theory of experimental EPR-steering criteria, derive a number of criteria applicable to discrete as well as continuous-variables observables, and study their efficacy in detecting that form of nonlocality in some classes of quantum states. We show that previous versions of EPR-type criteria can be rederived within this formalism, thus unifying these efforts from a modern quantum-information perspective and clarifying their conceptual and formal origin. The theory follows in close analogy with criteria for other forms of quantum nonlocality (Bell-nonlocality, entanglement), and because it is a hybrid of those two, it may lead to insights into the relationship between the different forms of nonlocality and the criteria that are able to detect them.Comment: Changed title, updated references, minor corrections, added journal-ref and DO

    Versatility of continuous-variable asymmetric tripartite entanglement allows Alice and Clare to keep secrets from Bob

    Get PDF
    The fully symmetric Gaussian tripartite entangled pure states will not exhibit two-mode Einstein-Podolsky-Rosen (EPR) steering. This means that any two participants cannot share quantum secrets using the security of one-sided device independent quantum key distribution (1SDI-QKD) without involving the third. They are restricted at most to standard quantum key distribution, which is less secure. Here we demonstrate an asymmetric tripartite system that can exhibit bipartite EPR steering, so that two of the participants can use 1SDI-QKD without involving the other. This is possible because the promiscuity relations of continuous-variable tripartite entanglement are different from those of discrete-variable systems. We analyze these properties for two different systems, showing that the asymmetric system exhibits practical properties not found in the symmetric one

    Efeito de agentes de controle biolĂłgico na indução de resistĂȘncia em videira.

    Get PDF
    O objetivo deste trabalho foi avaliar o efeito de agentes comerciais de controle biolĂłgico como indutores de resistĂȘncia em videira para o controle do mĂ­ldio

    Uncertainty relations for the realisation of macroscopic quantum superpositions and EPR paradoxes

    Full text link
    We present a unified approach, based on the use of quantum uncertainty relations, for arriving at criteria for the demonstration of the EPR paradox and macroscopic superpositions. We suggest to view each criterion as a means to demonstrate an EPR-type paradox, where there is an inconsistency between the assumptions of a form of realism, either macroscopic realism (MR) or local realism (LR), and the completeness of quantum mechanics.Comment: 9 pages, 2 figures, to appear Journ Mod Optics work presented at PQE 2007 conferenc

    Criteria for generalized macroscopic and mesoscopic quantum coherence

    Get PDF
    We consider macroscopic, mesoscopic and "S-scopic" quantum superpositions of eigenstates of an observable, and develop some signatures for their existence. We define the extent, or size SS of a superposition, with respect to an observable \hat{x}, as being the range of outcomes of \hat{x} predicted by that superposition. Such superpositions are referred to as generalized SS-scopic superpositions to distinguish them from the extreme superpositions that superpose only the two states that have a difference SS in their prediction for the observable. We also consider generalized SS-scopic superpositions of coherent states. We explore the constraints that are placed on the statistics if we suppose a system to be described by mixtures of superpositions that are restricted in size. In this way we arrive at experimental criteria that are sufficient to deduce the existence of a generalized SS-scopic superposition. The signatures developed are useful where one is able to demonstrate a degree of squeezing. We also discuss how the signatures enable a new type of Einstein-Podolsky-Rosen gedanken experiment.Comment: 15 pages, accepted for publication in Phys. Rev.

    Bell inequalities for Continuous-Variable Measurements

    Full text link
    Tests of local hidden variable theories using measurements with continuous variable (CV) outcomes are developed, and a comparison of different methods is presented. As examples, we focus on multipartite entangled GHZ and cluster states. We suggest a physical process that produces the states proposed here, and investigate experiments both with and without binning of the continuous variable. In the former case, the Mermin-Klyshko inequalities can be used directly. For unbinned outcomes, the moment-based CFRD inequalities are extended to functional inequalities by considering arbitrary functions of the measurements at each site. By optimising these functions, we obtain more robust violations of local hidden variable theories than with either binning or moments. Recent inequalities based on the algebra of quaternions and octonions are compared with these methods. Since the prime advantage of CV experiments is to provide a route to highly efficient detection via homodyne measurements, we analyse the effect of noise and detection losses in both binned and unbinned cases. The CV moment inequalities with an optimal function have greater robustness to both loss and noise. This could permit a loophole-free test of Bell inequalities.Comment: 17 pages, 6 figure
    • 

    corecore