2,169 research outputs found
Spin entanglement, decoherence and Bohm's EPR paradox
We obtain criteria for entanglement and the EPR paradox
for spin-entangled particles and analyse the effects of decoherence caused
by absorption and state purity errors. For a two qubit photonic state,
entanglement can occur for all transmission efficiencies. In this case,
the state preparation purity must be above a threshold value. However,
Bohmâs spin EPR paradox can be achieved only above a critical level of
loss. We calculate a required efficiency of 58%, which appears achievable
with current quantum optical technologies. For a macroscopic number of
particles prepared in a correlated state, spin entanglement and the EPR
paradox can be demonstrated using our criteria for efficiencies η > 1/3
and η > 2/3 respectively. This indicates a surprising insensitivity to loss
decoherence, in a macroscopic system of ultra-cold atoms or photons
Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox
We formally link the concept of steering (a concept created by Schrodinger
but only recently formalised by Wiseman, Jones and Doherty [Phys. Rev. Lett.
98, 140402 (2007)] and the criteria for demonstrations of
Einstein-Podolsky-Rosen (EPR) paradox introduced by Reid [Phys. Rev. A, 40, 913
(1989)]. We develop a general theory of experimental EPR-steering criteria,
derive a number of criteria applicable to discrete as well as
continuous-variables observables, and study their efficacy in detecting that
form of nonlocality in some classes of quantum states. We show that previous
versions of EPR-type criteria can be rederived within this formalism, thus
unifying these efforts from a modern quantum-information perspective and
clarifying their conceptual and formal origin. The theory follows in close
analogy with criteria for other forms of quantum nonlocality (Bell-nonlocality,
entanglement), and because it is a hybrid of those two, it may lead to insights
into the relationship between the different forms of nonlocality and the
criteria that are able to detect them.Comment: Changed title, updated references, minor corrections, added
journal-ref and DO
Versatility of continuous-variable asymmetric tripartite entanglement allows Alice and Clare to keep secrets from Bob
The fully symmetric Gaussian tripartite entangled pure states will not exhibit two-mode Einstein-Podolsky-Rosen (EPR) steering. This means that any two participants cannot share quantum secrets using the security of one-sided device independent quantum key distribution (1SDI-QKD) without involving the third. They are restricted at most to standard quantum key distribution, which is less secure. Here we demonstrate an asymmetric tripartite system that can exhibit bipartite EPR steering, so that two of the participants can use 1SDI-QKD without involving the other. This is possible because the promiscuity relations of continuous-variable tripartite entanglement are different from those of discrete-variable systems. We analyze these properties for two different systems, showing that the asymmetric system exhibits practical properties not found in the symmetric one
Efeito de agentes de controle biolĂłgico na indução de resistĂȘncia em videira.
O objetivo deste trabalho foi avaliar o efeito de agentes comerciais de controle biolĂłgico como indutores de resistĂȘncia em videira para o controle do mĂldio
Uncertainty relations for the realisation of macroscopic quantum superpositions and EPR paradoxes
We present a unified approach, based on the use of quantum uncertainty
relations, for arriving at criteria for the demonstration of the EPR paradox
and macroscopic superpositions. We suggest to view each criterion as a means to
demonstrate an EPR-type paradox, where there is an inconsistency between the
assumptions of a form of realism, either macroscopic realism (MR) or local
realism (LR), and the completeness of quantum mechanics.Comment: 9 pages, 2 figures, to appear Journ Mod Optics work presented at PQE
2007 conferenc
Criteria for generalized macroscopic and mesoscopic quantum coherence
We consider macroscopic, mesoscopic and "S-scopic" quantum superpositions of
eigenstates of an observable, and develop some signatures for their existence.
We define the extent, or size of a superposition, with respect to an
observable \hat{x}, as being the range of outcomes of \hat{x} predicted by that
superposition. Such superpositions are referred to as generalized -scopic
superpositions to distinguish them from the extreme superpositions that
superpose only the two states that have a difference in their prediction
for the observable. We also consider generalized -scopic superpositions of
coherent states. We explore the constraints that are placed on the statistics
if we suppose a system to be described by mixtures of superpositions that are
restricted in size. In this way we arrive at experimental criteria that are
sufficient to deduce the existence of a generalized -scopic superposition.
The signatures developed are useful where one is able to demonstrate a degree
of squeezing. We also discuss how the signatures enable a new type of
Einstein-Podolsky-Rosen gedanken experiment.Comment: 15 pages, accepted for publication in Phys. Rev.
Bell inequalities for Continuous-Variable Measurements
Tests of local hidden variable theories using measurements with continuous
variable (CV) outcomes are developed, and a comparison of different methods is
presented. As examples, we focus on multipartite entangled GHZ and cluster
states. We suggest a physical process that produces the states proposed here,
and investigate experiments both with and without binning of the continuous
variable. In the former case, the Mermin-Klyshko inequalities can be used
directly. For unbinned outcomes, the moment-based CFRD inequalities are
extended to functional inequalities by considering arbitrary functions of the
measurements at each site. By optimising these functions, we obtain more robust
violations of local hidden variable theories than with either binning or
moments. Recent inequalities based on the algebra of quaternions and octonions
are compared with these methods. Since the prime advantage of CV experiments is
to provide a route to highly efficient detection via homodyne measurements, we
analyse the effect of noise and detection losses in both binned and unbinned
cases. The CV moment inequalities with an optimal function have greater
robustness to both loss and noise. This could permit a loophole-free test of
Bell inequalities.Comment: 17 pages, 6 figure
- âŠ