564 research outputs found

    Classifying vortices in S= 3 Bose-Einstein condensates

    Get PDF
    Motivated by the recent realization of a 52^{52}Cr Bose-Einstein condensate, we consider the phase diagram of a general spin-three condensate as a function of its scattering lengths. We classify each phase according to its ``reciprocal spinor,'' using a method developed in a previous work. We show that such a classification can be naturally extended to describe the vortices for a spinor condensate by using the topological theory of defects. To illustrate, we systematically describe the types of vortex excitations for each phase of the spin-three condensate

    Dynamical Crystallization in the Dipole Blockade of Ultracold Atoms

    Full text link
    We describe a method for controlling many-body states in extended ensembles of Rydberg atoms, forming crystalline structures during laser excitation of a frozen atomic gas. Specifically, we predict the existence of an excitation number staircase in laser excitation of atomic ensembles into Rydberg states. Each step corresponds to a crystalline state with a well-defined of regularly spaced Rydberg atoms. We show that such states can be selectively excited by chirped laser pulses. Finally, we demonstarte that, sing quantum state transfer from atoms to light, such crystals can be used to create crystalline photonic states and can be probed via photon correlation measurements

    Microscopic Electron Models with Exact SO(5) Symmetry

    Full text link
    We construct a class of microscopic electron models with exact SO(5) symmetry between antiferromagnetic and d-wave superconducting ground states. There is an exact one-to-one correspondence between both single-particle and collective excitations in both phases. SO(5) symmetry breaking terms can be introduced and classified according to irreducible representations of the exact SO(5) algebra. The resulting phase diagram and collective modes are identical to that of the SO(5) nonlinear sigma model.Comment: 5 pages, LATEX, 4 eps fig