1,496 research outputs found
Scalar Field Corrections to AdS_4 Gravity from Higher Spin Gauge Theory
We compute the complete contribution to the stress-energy tensor in the
minimal bosonic higher spin theory in D=4 that is quadratic in the scalar
field. We find arbitrarily high derivative terms, and that the total sign of
the stress-energy tensor depends on the parity of the scalar field.Comment: 15 pages + appendix (30 pages
Analysis of Higher Spin Field Equations in Four Dimensions
The minimal bosonic higher spin gauge theory in four dimensions contains
massless particles of spin s=0,2,4,.. that arise in the symmetric product of
two spin 0 singletons. It is based on an infinite dimensional extension of the
AdS_4 algebra a la Vasiliev. We derive an expansion scheme in which the
gravitational gauge fields are treated exactly and the gravitational curvatures
and the higher spin gauge fields as weak perturbations. We also give the
details of an explicit iteration procedure for obtaining the field equations to
arbitrary order in curvatures. In particular, we highlight the structure of all
the quadratic terms in the field equations.Comment: Latex, 30 pages, several clarifications and few references adde
Holography in 4D (Super) Higher Spin Theories and a Test via Cubic Scalar Couplings
The correspondences proposed previously between higher spin gauge theories
and free singleton field theories were recently extended into a more complete
picture by Klebanov and Polyakov in the case of the minimal bosonic theory in
D=4 to include the strongly coupled fixed point of the 3d O(N) vector model.
Here we propose an N=1 supersymmetric version of this picture. We also
elaborate on the role of parity in constraining the bulk interactions, and in
distinguishing two minimal bosonic models obtained as two different consistent
truncations of the minimal N=1 model that retain the scalar or the
pseudo-scalar field. We refer to these models as the Type A and Type B models,
respectively, and conjecture that the latter is holographically dual to the 3d
Gross-Neveu model. In the case of the Type A model, we show the vanishing of
the three-scalar amplitude with regular boundary conditions. This agrees with
the O(N) vector model computation of Petkou, thereby providing a non-trivial
test of the Klebanov-Polyakov conjecture.Comment: 30p
- …