416 research outputs found
Class Day 1963 Speech Transcript: Open Yourself Wide as the Sky
Mr. Chairman, Dr. Jacobs, honored guests, college officers, members of the administrative staff, faculty, parents, friends, and fellow classmates:..
Characterization of systematic error in Advanced LIGO calibration
The raw outputs of the detectors within the Advanced Laser Interferometer
Gravitational-Wave Observatory need to be calibrated in order to produce the
estimate of the dimensionless strain used for astrophysical analyses. The two
detectors have been upgraded since the second observing run and finished the
year-long third observing run. Understanding, accounting, and/or compensating
for the complex-valued response of each part of the upgraded detectors improves
the overall accuracy of the estimated detector response to gravitational waves.
We describe improved understanding and methods used to quantify the response of
each detector, with a dedicated effort to define all places where systematic
error plays a role. We use the detectors as they stand in the first half (six
months) of the third observing run to demonstrate how each identified
systematic error impacts the estimated strain and constrain the statistical
uncertainty therein. For this time period, we estimate the upper limit on
systematic error and associated uncertainty to be in magnitude and deg in phase ( confidence interval) in the most sensitive frequency
band 20-2000 Hz. The systematic error alone is estimated at levels of
in magnitude and deg in phase
Transdiagnostic subgroups of cognitive impairment in early affective and psychotic illness
Cognitively impaired and spared patient subgroups were identified in psychosis and depression, and in clinical high-risk for psychosis (CHR). Studies suggest differences in underlying brain structural and functional characteristics. It is unclear whether cognitive subgroups are transdiagnostic phenomena in early stages of psychotic and affective disorder which can be validated on the neural level. Patients with recent-onset psychosis (ROP; N = 140; female = 54), recent-onset depression (ROD; N = 130; female = 73), CHR (N = 128; female = 61) and healthy controls (HC; N = 270; female = 165) were recruited through the multi-site study PRONIA. The transdiagnostic sample and individual study groups were clustered into subgroups based on their performance in eight cognitive domains and characterized by gray matter volume (sMRI) and resting-state functional connectivity (rsFC) using support vector machine (SVM) classification. We identified an impaired subgroup (NROP = 79, NROD = 30, NCHR = 37) showing cognitive impairment in executive functioning, working memory, processing speed and verbal learning (all p < 0.001). A spared subgroup (NROP = 61, NROD = 100, NCHR = 91) performed comparable to HC. Single-disease subgroups indicated that cognitive impairment is stronger pronounced in impaired ROP compared to impaired ROD and CHR. Subgroups in ROP and ROD showed specific symptom- and functioning-patterns. rsFC showed superior accuracy compared to sMRI in differentiating transdiagnostic subgroups from HC (BACimpaired = 58.5%; BACspared = 61.7%, both: p < 0.01). Cognitive findings were validated in the PRONIA replication sample (N = 409). Individual cognitive subgroups in ROP, ROD and CHR are more informative than transdiagnostic subgroups as they map onto individual cognitive impairment and specific functioning- and symptom-patterns which show limited overlap in sMRI and rsFC. Clinical trial registry name: German Clinical Trials Register (DRKS). Clinical trial registry URL: https://www.drks.de/drks_web/. Clinical trial registry number: DRKS00005042
The impact of visual dysfunctions in recent-onset psychosis and clinical high-risk state for psychosis.
Subtle subjective visual dysfunctions (VisDys) are reported by about 50% of patients with schizophrenia and are suggested to predict psychosis states. Deeper insight into VisDys, particularly in early psychosis states, could foster the understanding of basic disease mechanisms mediating susceptibility to psychosis, and thereby inform preventive interventions. We systematically investigated the relationship between VisDys and core clinical measures across three early phase psychiatric conditions. Second, we used a novel multivariate pattern analysis approach to predict VisDys by resting-state functional connectivity within relevant brain systems. VisDys assessed with the Schizophrenia Proneness Instrument (SPI-A), clinical measures, and resting-state fMRI data were examined in recent-onset psychosis (ROP, n = 147), clinical high-risk states of psychosis (CHR, n = 143), recent-onset depression (ROD, n = 151), and healthy controls (HC, n = 280). Our multivariate pattern analysis approach used pairwise functional connectivity within occipital (ON) and frontoparietal (FPN) networks implicated in visual information processing to predict VisDys. VisDys were reported more often in ROP (50.34%), and CHR (55.94%) than in ROD (16.56%), and HC (4.28%). Higher severity of VisDys was associated with less functional remission in both CHR and ROP, and, in CHR specifically, lower quality of life (Qol), higher depressiveness, and more severe impairment of visuospatial constructability. ON functional connectivity predicted presence of VisDys in ROP (balanced accuracy 60.17%, p = 0.0001) and CHR (67.38%, p = 0.029), while in the combined ROP + CHR sample VisDys were predicted by FPN (61.11%, p = 0.006). These large-sample study findings suggest that VisDys are clinically highly relevant not only in ROP but especially in CHR, being closely related to aspects of functional outcome, depressiveness, and Qol. Findings from multivariate pattern analysis support a model of functional integrity within ON and FPN driving the VisDys phenomenon and being implicated in core disease mechanisms of early psychosis states
Quantum correlations between the light and kilogram-mass mirrors of LIGO
The measurement of minuscule forces and displacements with ever greater precision is inhibited by the Heisenberg uncertainty principle, which imposes a limit to the precision with which the position of an object can be measured continuously, known as the standard quantum limit1,2,3,4. When light is used as the probe, the standard quantum limit arises from the balance between the uncertainties of the photon radiation pressure applied to the object and of the photon number in the photoelectric detection. The only way to surpass the standard quantum limit is by introducing correlations between the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light that it reflects5. Here we confirm experimentally the theoretical prediction5 that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). We characterize and compare noise spectra taken without squeezing and with squeezed vacuum states injected at varying quadrature angles. After subtracting classical noise, our measurements show that the quantum mechanical uncertainties in the phases of the 200-kilowatt laser beams and in the positions of the 40-kilogram mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty that is a factor of 1.4 (3 decibels) below the standard quantum limit. We anticipate that the use of quantum correlations will improve not only the observation of gravitational waves, but also more broadly future quantum noise-limited measurements.LIGO was constructed by the California Institute of Technology and the
Massachusetts Institute of Technology with funding from the National Science Foundation,
and operates under Cooperative Agreement number PHY-1764464. Advanced LIGO was built
under grant number PHY-0823459. The authors gratefully acknowledge the support of the
Australian Research Council under the ARC Centre of Excellence for Gravitational Wave
Discovery grant number CE170100004, Linkage Infrastructure, Equipment and Facilities grant
number LE170100217 and Discovery Early Career Award number DE190100437; the National
Science Foundation Graduate Research Fellowship under grant number 1122374; the Science
and Technology Facilities Council of the United Kingdom; and the LIGO Scientific
Collaboration Fellows programme
- …