3,892 research outputs found
Circumstellar dust
The presence of dust in the general interstellar medium is inferred from the extinction, polarization, and scattering of starlight; the presence of dark nebulae; interstellar depletions; the observed infrared emission around certain stars and various types of interstellar clouds. Interstellar grains are subject to various destruction mechanisms that reduce their size or even completely destroy them. A continuous source of newly formed dust must therefore be present for dust to exist in the various phases of the interstellar medium (ISM). The working group has the following goals: (1) review the evidences for the formation of dust in the various sources; (2) examine the clues to the nature and composition of the dust; (3) review the status of grain formation theories; (4) examine any evidence for the processing of the dust prior to its injection into the interstellar medium; and (5) estimate the relative contribution of the various sources to the interstellar dust population
The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta I: Radiatively Heated Dust in the Crab Nebula
Recent far-infrared (IR) observations of supernova remnants (SNRs) have
revealed significantly large amounts of newly-condensed dust in their ejecta,
comparable to the total mass of available refractory elements. The dust masses
derived from these observations assume that all the grains of a given species
radiate at the same temperature, regardless of the dust heating mechanism or
grain radius. In this paper, we derive the dust mass in the ejecta of the Crab
Nebula, using a physical model for the heating and radiation from the dust. We
adopt a power-law distribution of grain sizes and two different dust
compositions (silicates and amorphous carbon), and calculate the heating rate
of each dust grain by the radiation from the pulsar wind nebula (PWN). We find
that the grains attain a continuous range of temperatures, depending on their
size and composition. The total mass derived from the best-fit models to the
observed IR spectrum is 0.019-0.13 solar masses, depending on the assumed grain
composition. We find that the power-law size distribution of dust grains is
characterized by a power-law index of 3.5-4.0 and a maximum grain size larger
than 0.1 microns. The grain sizes and composition are consistent with what is
expected for dust grains formed in a Type IIP SN. Our derived dust mass is at
least a factor of two less than the mass reported in previous studies of the
Crab Nebula that assumed more simplified two-temperature models. The results of
this study show that a physical model resulting in a realistic distribution of
dust temperatures can constrain the dust properties and affect the derived dust
masses. Our study may also have important implications for deriving grain
properties and mass estimates in other SNRs and for the ultimate question of
whether SNe are major sources of dust in the Galactic interstellar medium (ISM)
and in external galaxies.Comment: 9 pages, 2 tables, 8 figures, Accepted to The Astrophysical Journa
Constraints to Energy Spectra of Blazars based on Recent EBL Limits from Galaxy Counts
We combine the recent estimate of the contribution of galaxies to the 3.6
micron intensity of the extragalactic background light (EBL) with optical and
near-infrared (IR) galaxy counts to set new limits on intrinsic spectra of some
of the most distant TeV blazars 1ES 0229+200, 1ES 1218+30.4, and 1ES 1101-232,
located at redshifts 0.1396, 0.182, and 0.186, respectively. The new lower
limit on the 3.6 micron EBL intensity is significantly higher than the previous
one set by the cumulative emission from resolved Spitzer galaxies. Correcting
for attenuation by the revised EBL, we show that the differential spectral
index of the intrinsic spectrum of the three blazars is 1.28 +- 0.20 or harder.
These results present blazar emission models with the challenge of producing
extremely hard intrinsic spectra in the sub-TeV to multi-TeV regime. These
results also question the reliability of recently derived upper limits on the
near-IR EBL intensity that are solely based on the assumption that intrinsic
blazar spectra should not be harder than 1.5.Comment: 13 pages, 2 figures, submitted to the Astrophysical Journa
- …