94 research outputs found
Subspace Evasive Sets
In this work we describe an explicit, simple, construction of large subsets
of F^n, where F is a finite field, that have small intersection with every
k-dimensional affine subspace. Interest in the explicit construction of such
sets, termed subspace-evasive sets, started in the work of Pudlak and Rodl
(2004) who showed how such constructions over the binary field can be used to
construct explicit Ramsey graphs. More recently, Guruswami (2011) showed that,
over large finite fields (of size polynomial in n), subspace evasive sets can
be used to obtain explicit list-decodable codes with optimal rate and constant
list-size. In this work we construct subspace evasive sets over large fields
and use them to reduce the list size of folded Reed-Solomon codes form poly(n)
to a constant.Comment: 16 page
On the size of Kakeya sets in finite fields
A Kakeya set is a subset of F^n, where F is a finite field of q elements,
that contains a line in every direction. In this paper we show that the size of
every Kakeya set is at least C_n * q^n, where C_n depends only on n. This
improves the previously best lower bound for general n of ~q^{4n/7}.Comment: Improved bound and added reference
Improved rank bounds for design matrices and a new proof of Kelly's theorem
We study the rank of complex sparse matrices in which the supports of
different columns have small intersections. The rank of these matrices, called
design matrices, was the focus of a recent work by Barak et. al. (BDWY11) in
which they were used to answer questions regarding point configurations. In
this work we derive near-optimal rank bounds for these matrices and use them to
obtain asymptotically tight bounds in many of the geometric applications. As a
consequence of our improved analysis, we also obtain a new, linear algebraic,
proof of Kelly's theorem, which is the complex analog of the Sylvester-Gallai
theorem
Outlaw distributions and locally decodable codes
Locally decodable codes (LDCs) are error correcting codes that allow for
decoding of a single message bit using a small number of queries to a corrupted
encoding. Despite decades of study, the optimal trade-off between query
complexity and codeword length is far from understood. In this work, we give a
new characterization of LDCs using distributions over Boolean functions whose
expectation is hard to approximate (in~~norm) with a small number of
samples. We coin the term `outlaw distributions' for such distributions since
they `defy' the Law of Large Numbers. We show that the existence of outlaw
distributions over sufficiently `smooth' functions implies the existence of
constant query LDCs and vice versa. We give several candidates for outlaw
distributions over smooth functions coming from finite field incidence
geometry, additive combinatorics and from hypergraph (non)expanders.
We also prove a useful lemma showing that (smooth) LDCs which are only
required to work on average over a random message and a random message index
can be turned into true LDCs at the cost of only constant factors in the
parameters.Comment: A preliminary version of this paper appeared in the proceedings of
ITCS 201
Affine extractors over large fields with exponential error
We describe a construction of explicit affine extractors over large finite
fields with exponentially small error and linear output length. Our
construction relies on a deep theorem of Deligne giving tight estimates for
exponential sums over smooth varieties in high dimensions.Comment: To appear in Comput. Comple
Variety Evasive Sets
We give an explicit construction of a large subset of F^n, where F is a
finite field, that has small intersection with any affine variety of fixed
dimension and bounded degree. Our construction generalizes a recent result of
Dvir and Lovett (STOC 2012) who considered varieties of degree one (affine
subspaces).Comment: 13 page
Recommended from our members
Fourier and Circulant Matrices Are Not Rigid
The concept of matrix rigidity was first introduced by Valiant in [Friedman, 1993]. Roughly speaking, a matrix is rigid if its rank cannot be reduced significantly by changing a small number of entries. There has been extensive interest in rigid matrices as Valiant showed in [Friedman, 1993] that rigidity can be used to prove arithmetic circuit lower bounds.
In a surprising result, Alman and Williams showed that the (real valued) Hadamard matrix, which was conjectured to be rigid, is actually not very rigid. This line of work was extended by [Dvir and Edelman, 2017] to a family of matrices related to the Hadamard matrix, but over finite fields. In our work, we take another step in this direction and show that for any abelian group G and function f:G - > {C}, the matrix given by M_{xy} = f(x - y) for x,y in G is not rigid. In particular, we get that complex valued Fourier matrices, circulant matrices, and Toeplitz matrices are all not rigid and cannot be used to carry out Valiant\u27s approach to proving circuit lower bounds. This complements a recent result of Goldreich and Tal [Goldreich and Tal, 2016] who showed that Toeplitz matrices are nontrivially rigid (but not enough for Valiant\u27s method). Our work differs from previous non-rigidity results in that those works considered matrices whose underlying group of symmetries was of the form {F}_p^n with p fixed and n tending to infinity, while in the families of matrices we study, the underlying group of symmetries can be any abelian group and, in particular, the cyclic group {Z}_N, which has very different structure. Our results also suggest natural new candidates for rigidity in the form of matrices whose symmetry groups are highly non-abelian.
Our proof has four parts. The first extends the results of [Josh Alman and Ryan Williams, 2016; Dvir and Edelman, 2017] to generalized Hadamard matrices over the complex numbers via a new proof technique. The second part handles the N x N Fourier matrix when N has a particularly nice factorization that allows us to embed smaller copies of (generalized) Hadamard matrices inside of it. The third part uses results from number theory to bootstrap the non-rigidity for these special values of N and extend to all sufficiently large N. The fourth and final part involves using the non-rigidity of the Fourier matrix to show that the group algebra matrix, given by M_{xy} = f(x - y) for x,y in G, is not rigid for any function f and abelian group G
A Sauer-Shelah-Perles Lemma for Sumsets
We show that any family of subsets satisfies , where is the VC
dimension of , and is the
symmetric difference operator. We also observe that replacing by
either or fails to satisfy an analogous statement. Our proof is
based on the polynomial method; specifically, on an argument due to [Croot,
Lev, Pach '17].Comment: 6 pages, fixed a few typo
- …