391 research outputs found
Composition of Massive Giant Planets
The two current models for giant planet formation are core accretion and disk
instability. We discuss the core masses and overall planetary enrichment in
heavy elements predicted by the two formation models, and show that both models
could lead to a large range of final compositions. For example, both can form
giant planets with nearly stellar compositions. However, low-mass giant
planets, enriched in heavy elements compared to their host stars, are more
easily explained by the core accretion model. The final structure of the
planets, i.e., the distribution of heavy elements, is not firmly constrained in
either formation model.Comment: 6 pages, Proceedings of IAU Symposium 276 (Invited talk), The
Astrophysics of Planetary Systems: Formation, Structure, and Dynamical
Evolution. Turin, Italy, Oct. 201
Planetary ring dynamics and morphology
Evidence for a moonlet belt in the region between Saturn's close-in moonrings Pandora and Prometheus is discussed. It is argued that little-known observations of magnetospheric electron density by Pioneer 11 imply substantial, ongoing injections of mass into the 2000 km region which surrounds the F ring. A hypothesis is presented that these events result naturally from interparticle collisions between the smaller members of an optically thin belt of moonlets. Also discussed is work on Uranus ring structure and photometry, image processing and analysis of the Jonian ring strucure, photometric and structural studies of the A ring of Saturn, and improvements to an image processing system for ring studies
Planetary ring studies
The following topics are covered: (1) characterization of the fine scale structure in Saturn's A and B rings; (2) ballistic transport modeling and evolution of fine ring structure; (3) faint features in the rings of Saturn; (4) the Encke moonlet; (5) dynamics in ringmoon systems; (6) a nonclassical radiative transfer model; and (7) particle properties from stellar occultation data
On the Evolution and Survival of Protoplanets Embedded in a Protoplanetary Disk
We model the evolution of a Jupiter-mass protoplanet formed by the disk
instability mechanism at various radial distances accounting for the presence
of the disk. Using three different disk models, it is found that a newly-formed
Jupiter-mass protoplanet at radial distance of 5-10 AU cannot
undergo a dynamical collapse and evolve further to become a gravitational bound
planet. We therefore conclude that {\it giant planets, if formed by the
gravitational instability mechanism, must form and remain at large radial
distances during the first 10 years of their evolution}. The
minimum radial distances in which protoplanets of 1 Saturn-mass, 3 and 5
Jupiter-mass protoplanets can evolve using a disk model with and are found to be 12, 9, and 7 AU, respectively.
The effect of gas accretion on the planetary evolution of a Jupiter-mass
protoplanet is also investigated. It is shown that gas accretion can shorten
the pre-collapse timescale substantially. Our study suggests that the timescale
of the pre-collapse stage does not only depend on the planetary mass, but is
greatly affected by the presence of the disk and efficient gas accretion.Comment: 26 pages, 2 tables, 10 figures. Accepted for publication in Ap
On The Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability
We investigate the coupling between rock-size solids and gas during the
formation of gas giant planets by disk fragmentation in the outer regions of
massive disks. In this study, we use three-dimensional radiative hydrodynamics
simulations and model solids as a spatial distribution of particles. We assume
that half of the total solid fraction is in small grains and half in large
solids. The former are perfectly entrained with the gas and set the opacity in
the disk, while the latter are allowed to respond to gas drag forces, with the
back reaction on the gas taken into account. To explore the maximum effects of
gas-solid interactions, we first consider 10cm-size particles. We then compare
these results to a simulation with 1 km-size particles, which explores the
low-drag regime. We show that (1) disk instability planets have the potential
to form large cores due to aerodynamic capturing of rock-size solids in spiral
arms before fragmentation; (2) that temporary clumps can concentrate tens of
of solids in very localized regions before clump disruption; (3)
that the formation of permanent clumps, even in the outer disk, is dependent on
the grain-size distribution, i.e., the opacity; (4) that nonaxisymmetric
structure in the disk can create disk regions that have a solids-to-gas ratio
greater than unity; (5) that the solid distribution may affect the
fragmentation process; (6) that proto-gas giants and proto-brown dwarfs can
start as differentiated objects prior to the H collapse phase; (7) that
spiral arms in a gravitationally unstable disk are able to stop the inward
drift of rock-size solids, even redistributing them to larger radii; and, (8)
that large solids can form spiral arms that are offset from the gaseous spiral
arms. We conclude that planet embryo formation can be strongly affected by the
growth of solids during the earliest stages of disk accretion.Comment: Accepted by ApJ. 55 pages including 24 figures. In response to
comments from the referee, we have included a new simulation with km-size
objects and have revised some discussions and interpretations. Major
conclusions remain unchanged, and new conclusions have been added in response
to the new ru
Did Fomalhaut, HR 8799, and HL Tauri Form Planets via the Gravitational Instability? Placing Limits on the Required Disk Masses
Disk fragmentation resulting from the gravitational instability has been
proposed as an efficient mechanism for forming giant planets. We use the planet
Fomalhaut b, the triple-planetary system HR 8799, and the potential protoplanet
associated with HL Tau to test the viability of this mechanism. We choose the
above systems since they harbor planets with masses and orbital characteristics
favored by the fragmentation mechanism. We do not claim that these planets must
have formed as the result of fragmentation, rather the reverse: if planets can
form from disk fragmentation, then these systems are consistent with what we
should expect to see. We use the orbital characteristics of these recently
discovered planets, along with a new technique to more accurately determine the
disk cooling times, to place both lower and upper limits on the disk surface
density--and thus mass--required to form these objects by disk fragmentation.
Our cooling times are over an order of magnitude shorter than those of Rafikov
(2005),which makes disk fragmentation more feasible for these objects. We find
that the required mass interior to the planet's orbital radius is ~0.1 Msun for
Fomalhaut b, the protoplanet orbiting HL Tau, and the outermost planet of HR
8799. The two inner planets of HR 8799 probably could not have formed in situ
by disk fragmentation.Comment: 5 pages, 1 figure, accepted for publication in ApJ
Gravitational instabilities in a protosolar-like disc - I. Dynamics and chemistry
MGE gratefully acknowledges a studentship from the European Research Council (ERC; project PALs 320620). JDI gratefully acknowledges funding from the European Union FP7-2011 under grant agreement no. 284405. ACB's contribution was supported, in part, by The University of British Columbia and the Canada Research Chairs program. PC and TWH acknowledge the financial support of the European Research Council (ERC; project PALs 320620).To date, most simulations of the chemistry in protoplanetary discs have used 1 + 1D or 2D axisymmetric α-disc models to determine chemical compositions within young systems. This assumption is inappropriate for non-axisymmetric, gravitationally unstable discs, which may be a significant stage in early protoplanetary disc evolution. Using 3D radiative hydrodynamics, we have modelled the physical and chemical evolution of a 0.17 M⊙ self-gravitating disc over a period of 2000 yr. The 0.8 M⊙ central protostar is likely to evolve into a solar-like star, and hence this Class 0 or early Class I young stellar object may be analogous to our early Solar system. Shocks driven by gravitational instabilities enhance the desorption rates, which dominate the changes in gas-phase fractional abundances for most species. We find that at the end of the simulation, a number of species distinctly trace the spiral structure of our relatively low-mass disc, particularly CN. We compare our simulation to that of a more massive disc, and conclude that mass differences between gravitationally unstable discs may not have a strong impact on the chemical composition. We find that over the duration of our simulation, successive shock heating has a permanent effect on the abundances of HNO, CN and NH3, which may have significant implications for both simulations and observations. We also find that HCO+ may be a useful tracer of disc mass. We conclude that gravitational instabilities induced in lower mass discs can significantly, and permanently, affect the chemical evolution, and that observations with high-resolution instruments such as Atacama Large Millimeter/submillimeter Array (ALMA) offer a promising means of characterizing gravitational instabilities in protosolar discs.Publisher PDFPeer reviewe
Destruction of massive fragments in protostellar disks and crystalline silicate production
We present a mechanism for the crystalline silicate production associated
with the formation and subsequent destruction of massive fragments in young
protostellar disks. The fragments form in the embedded phase of star formation
via disk fragmentation at radial distances \ga 50-100 AU and anneal small
amorphous grains in their interior when the gas temperature exceeds the
crystallization threshold of ~ 800 K. We demonstrate that fragments that form
in the early embedded phase can be destroyed before they either form solid
cores or vaporize dust grains, thus releasing the processed crystalline dust
into various radial distances from sub-AU to hundred-AU scales. Two possible
mechanisms for the destruction of fragments are the tidal disruption and
photoevaporation as fragments migrate radially inward and approach the central
star and also dispersal by tidal torques exerted by spiral arms. As a result,
most of the crystalline dust concentrates to the disk inner regions and spiral
arms, which are the likely sites of fragment destruction.Comment: Accepted by the Astrophysical Journal Letter
- …