37 research outputs found
Electron Multiplying Low-Voltage CCD With Increased Gain
Novel designs for the gain elements in electron multiplying (EM) CCDs have been implemented in a device manufactured in a low voltage CMOS process. Derived with help from TCAD simulations, the designs employ modified gate geometries in order to significantly increase the EM gain over traditional structures. Two new EM elements have been demonstrated with an order of magnitude higher gain than the typical rectangular gate designs, achieved over 100 amplifying stages and without an increase in the electric field. The principles presented in this work can be used in CMOS and CCD imagers employing electron multiplication in order to boost the gain and reduce undesirable effects such as clock-induced charge generation and gain ageing
Low Voltage Electron Multiplying CCD in a CMOS Process
Low light level and high-speed image sensors as required for space applications can suffer from a decrease in the signal to noise ratio (SNR) due to the photon-starved environment and limitations of the sensor’s readout noise. The SNR can be increased by the implementation of Time Delay Integration (TDI) as it allows photoelectrons from multiple exposures to be summed in the charge domain with no added noise. Electron Multiplication (EM) can further improve the SNR and lead to an increase in device performance. However, both techniques have traditionally been confined to Charge Coupled Devices (CCD) due to the efficient charge transfer required. With the increase in demand for CMOS sensors with equivalent or superior functionality and performance, this paper presents findings from the characterisation of a low voltage EMCCD in a CMOS process using advanced design features to increase the electron multiplying gain. By using the CMOS process, it is possible to increase chip integration and functionality and achieve higher readout speeds and reduced pixel size. The presented characterisation results include analysis of the photon transfer curve, the dark current, the electron multiplying gain and analysis of the parameters’ dependence on temperature and operating voltage
Recommended from our members
Novel Developments in Scientific EMCCDs
This thesis presents a complete characterisation and an assessment of the technology readiness of a new Electron Multiplying Charge Coupled Devices (EMCCD) technology. Several factors of interest are studied here including, charge transfer efficiency, gain ageing and radiation effects from protons. Many light-starved and high-speed image applications (e.g. observation from space and automated visual inspection) can benefit from Time Delay Integration (\acrshort{tdi}) as it allows photoelectrons from multiple exposures to be summed in the charge domain with no added noise. Electron multiplication (EM) can be used to further increase the signal to noise ratio for extremely faint light signals. There is a growing demand for Complementary metal–oxide–semiconductor (\acrshort{cmos}) sensors with the same or greater functionality and even better performance. The research presented here analyses the functionality of a recently designed EMCCD in a CMOS process. This device (EMTC1) incorporates two novel EM pixel structures which enable high gain at relatively low voltages. The theory and architecture of Charge Coupled Devices (CCDs) and EMCCDs are discussed, providing a technical background for the results. Furthermore, the practical methods, including experimental techniques developed for this device's testing, are presented here. Ageing within the device is a primary focus within this thesis, as is the effect of proton irradiation. The effects of the radiation damage on parameters such as dark current and Charge Transfer Inefficiency (CTI) have been documented along with its effect on EM gain. These results have been corroborated with simulations of device operation in TCAD
Recommended from our members
Volcanic ash as a resource for future research on Earth and the Moon
When a volcano erupts, it is often associated with destruction, particularly damage to infrastructure and loss of life. But these natural events also offer unexpected research opportunities, leading to serendipitous discoveries. This was the case for the volcanic events that made the headlines during 19 September to 25 December 2021, on the Canarian Island of La Palma. Rather than viewing the voluminous ash that erupted as a waste material needing to be removed as soon as possible, we saw the many possibilities that this remarkable material could offer science and engineering. Sustainability is a word that is commonly used in connection with geology these days. Here we present some possibilities of how the La Palma ash can be re‐purposed for use on this planet but also help us to develop new ideas for the future living on the Moon
Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS
The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition
About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors
An adaptable integrated modelling platform to support rapidly evolving agricultural and environmental policy
The utility of integrated models for informing policy has been criticised due to limited stakeholder engagement, model opaqueness, inadequate transparency in assumptions, lack of model flexibility and lack of communication of uncertainty that, together, lead to a lack of trust in model outputs. We address these criticisms by presenting the ERAMMP Integrated Modelling Platform (IMP), developed to support the design of new “business-critical” policies focused on agriculture, land-use and natural resource management. We demonstrate how the long-term (>5 years), iterative, two-way and continuously evolving participatory process led to the co-creation of the IMP with government, building trust and understanding in a complex integrated model. This is supported by a customisable modelling framework that is sufficiently flexible to adapt to changing policy needs in near real-time. We discuss how these attributes have facilitated cultural change within the Welsh Government where the IMP is being actively used to explore, test and iterate policy ideas prior to final policy design and implementation