170 research outputs found
Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope.
We demonstrate the capability of a new generation adaptive optics scanning laser ophthalmoscope (AOSLO) to resolve cones and rods in normal subjects, and confirm our findings by comparing cone and rod spacing with published histology measurements. Cone and rod spacing measurements are also performed on AOSLO images from two different diseased eyes, one affected by achromatopsia and the other by acute zonal occult outer retinopathy (AZOOR). The potential of AOSLO technology in the study of these and other retinal diseases is illustrated
Recommended from our members
Relationship Between Foveal Cone Structure and Visual Acuity Measured With Adaptive Optics Scanning Laser Ophthalmoscopy in Retinal Degeneration.
PurposeTo evaluate foveal function in patients with inherited retinal degenerations (IRD) by measuring visual acuity (VA) after correction of higher-order aberrations.MethodsAdaptive optics scanning laser ophthalmoscopy (AOSLO) was used to image cones in 4 healthy subjects and 15 patients with IRD. The 840-nm scanning laser delivered an "E" optotype to measure AOSLO-mediated VA (AOSLO-VA). Cone spacing was measured at the preferred retinal locus by two independent graders and the percentage of cones below the average density of 47 age-similar healthy subjects was computed. Cone spacing was correlated with best-corrected VA measured with the Early Treatment of Diabetic Retinopathy Study protocol (ETDRS-VA), AOSLO-VA, and foveal sensitivity.ResultsETDRS-VA significantly correlated with AOSLO-VA (ρ = 0.79, 95% confidence interval [CI] 0.5-0.9). Cone spacing correlated with AOSLO-VA (ρ = 0.54, 95% CI 0.02-0.7), and negatively correlated with ETDRS letters read (ρ = -0.64, 95% CI -0.8 to -0.2). AOSLO-VA remained ≥20/20 until cones decreased to 40.2% (CI 31.1-45.5) below normal. Similarly, ETDRS-VA remained ≥20/20 until cones were 42.0% (95% CI 36.5-46.1) below normal. Cone spacing z scores negatively correlated with foveal sensitivity (ρ = -0.79, 95% CI -0.9 to -0.4) and foveal sensitivity was ≥35 dB until cones were 43.1% (95% CI 39.3-46.6) below average.ConclusionsVA and foveal cone spacing were weakly correlated until cones were reduced by 40% to 43% below normal. The relationship suggests that VA is an insensitive measure of foveal cone survival; cone spacing may be a more sensitive measure of cone loss
Recommended from our members
Loss of Foveal Cone Structure Precedes Loss of Visual Acuity in Patients With Rod-Cone Degeneration.
PurposeTo assess the relationship between cone spacing and visual acuity in eyes with rod-cone degeneration (RCD) followed longitudinally.MethodsHigh-resolution images of the retina were obtained using adaptive optics scanning laser ophthalmoscopy from 13 eyes of nine RCD patients and 13 eyes of eight healthy subjects at two sessions separated by 10 or more months (mean 765 days, range 311-1935 days). Cone spacing Z-score measured as close as possible (average <0.25°) to the preferred retinal locus was compared with visual acuity (letters read on the Early Treatment of Diabetic Retinopathy Study [ETDRS] chart and logMAR) and foveal sensitivity.ResultsCone spacing was significantly correlated with ETDRS letters read (ρ = -0.47, 95%CI -0.67 to -0.24), logMAR (ρ = 0.46, 95%CI 0.24 to 0.66), and foveal sensitivity (ρ = -0.30, 95%CI -0.52 to -0.018). There was a small but significant increase in mean cone spacing Z-score during follow-up of +0.97 (95%CI 0.57 to 1.4) in RCD patients, but not in healthy eyes, and there was no significant change in any measure of visual acuity.ConclusionsCone spacing was correlated with visual acuity and foveal sensitivity. In RCD patients, cone spacing increased during follow-up, while visual acuity did not change significantly. Cone spacing Z-score may be a more sensitive measure of cone loss at the fovea than visual acuity in patients with RCD
Correction: Gustafson et al., Whole Genome Sequencing Revealed Mutations in Two Independent Genes as the Underlying Cause of Retinal Degeneration in an Ashkenazi Jewish Pedigree. Genes 2017, 8, 210.
Following publication of our article [1], we identified discrepancies between the pedigree shown in Figure 1 and the rest of the text.[...]
Recommended from our members
Cone Spacing Correlates With Retinal Thickness and Microperimetry in Patients With Inherited Retinal Degenerations.
PurposeTo determine whether high-resolution retinal imaging measures of macular structure correlate with visual function over 36 months in retinal degeneration (RD) patients and normal subjects.MethodsTwenty-six eyes of 16 RD patients and 16 eyes of 8 normal subjects were studied at baseline; 15 eyes (14 RD) and 11 eyes (6 normal) were studied 36 months later. Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO) was used to identify regions of interest (ROIs) with unambiguous cones at baseline to measure cone spacing. AOSLO images were aligned with spectral-domain optical coherence tomography (SD-OCT) and fundus-guided microperimetry results to correlate structure and function at the ROIs. SD-OCT images were segmented to measure inner segment (IS) and outer segment (OS) thickness. Correlations between cone spacing, IS and OS thickness and sensitivity were assessed using Spearman correlation coefficient ρ with bootstrap analyses clustered by person.ResultsCone spacing (ρ = 0.57, P < 0.001) and macular sensitivity (ρ = 0.19, P = 0.14) were significantly correlated with eccentricity in patients. Controlling for eccentricity, cone spacing Z-scores were inversely correlated with IS (ρ = -0.29, P = 0.002) and OS thickness (ρ = -0.39, P < 0.001) in RD patients only, and with sensitivity in normal subjects (ρ = -0.22, P < 0.001) and RD patients (ρ = -0.38, P < 0.001). After 36 months, cone spacing increased (P < 0.001) and macular sensitivity decreased (P = 0.007) compared to baseline in RD patients.ConclusionsCone spacing increased and macular sensitivity declined significantly in RD patients over 36 months. High resolution images of cone structure correlated with retinal sensitivity, and may be appropriate outcome measures for clinical trials in RD
Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis.
PURPOSE:Confocal adaptive optics scanning laser ophthalmoscope (AOSLO) images provide a sensitive measure of cone structure. However, the relationship between structural findings of diminished cone reflectivity and visual function is unclear. We used fundus-referenced testing to evaluate visual function in regions of apparent cone loss identified using confocal AOSLO images. METHODS:A patient diagnosed with acute bilateral foveolitis had spectral-domain optical coherence tomography (SD-OCT) (Spectralis HRA + OCT system [Heidelberg Engineering, Vista, CA, USA]) images indicating focal loss of the inner segment-outer segment junction band with an intact, but hyper-reflective, external limiting membrane. Five years after symptom onset, visual acuity had improved from 20/80 to 20/25, but the retinal appearance remained unchanged compared to 3 months after symptoms began. We performed structural assessments using SD-OCT, directional OCT (non-standard use of a prototype on loan from Carl Zeiss Meditec) and AOSLO (custom-built system). We also administered fundus-referenced functional tests in the region of apparent cone loss, including analysis of preferred retinal locus (PRL), AOSLO acuity, and microperimetry with tracking SLO (TSLO) (prototype system). To determine AOSLO-corrected visual acuity, the scanning laser was modulated with a tumbling E consistent with 20/30 visual acuity. Visual sensitivity was assessed in and around the lesion using TSLO microperimetry. Complete eye examination, including standard measures of best-corrected visual acuity, visual field tests, color fundus photos, and fundus auto-fluorescence were also performed. RESULTS:Despite a lack of visible cone profiles in the foveal lesion, fundus-referenced vision testing demonstrated visual function within the lesion consistent with cone function. The PRL was within the lesion of apparent cone loss at the fovea. AOSLO visual acuity tests were abnormal, but measurable: for trials in which the stimulus remained completely within the lesion, the subject got 48% correct, compared to 78% correct when the stimulus was outside the lesion. TSLO microperimetry revealed reduced, but detectible, sensitivity thresholds within the lesion. CONCLUSIONS AND IMPORTANCE:Fundus-referenced visual testing proved useful to identify functional cones despite apparent photoreceptor loss identified using AOSLO and SD-OCT. While AOSLO and SD-OCT appear to be sensitive for the detection of abnormal or absent photoreceptors, changes in photoreceptors that are identified with these imaging tools do not correlate completely with visual function in every patient. Fundus-referenced vision testing is a useful tool to indicate the presence of cones that may be amenable to recovery or response to experimental therapies despite not being visible on confocal AOSLO or SD-OCT images
Recommended from our members
Retinopathy and optic atrophy in a case of COQ2-related primary coenzyme Q10 deficiency
PurposeTo describe a case of primary coenzyme Q10 deficiency in a child manifesting as early-onset renal failure, retinal dystrophy, and optic atrophy leading to progressive vision loss.MethodsClinical presentation and workup including visual fields, electroretinogram, and optical coherence tomography are presented. Genetic testing was performed.ResultsAn eight-year-old female with nephropathy requiring renal transplantation subsequently developed progressive cone-rod dystrophy and optic atrophy. The patient had negative results on a targeted next-generation sequencing retinal dystrophy panel but whole-exome sequencing revealed two variants in COQ2 (likely biallelic), consistent with a diagnosis of primary coenzyme Q10 deficiency.ConclusionsPrimary coenzyme Q10 deficiency is a rare disorder with variable systemic and ocular findings; there is also genetic heterogeneity. Genetic testing aids in the diagnosis of this condition, and variants in the COQ2 and PDSS1 genes appear to have the strongest association with ocular manifestations. Oral supplementation of coenzyme Q10 may slow progression of disease. This case highlights the utility of whole-exome sequencing in the diagnosis of a rare syndromic form of ocular disease and reports a novel phenotypic association for this condition
Repeatability of Cone Spacing Measures in Eyes With Inherited Retinal Degenerations
PURPOSE. To determine short-term variability of adaptive optics scanning laser ophthalmoscopy (AOSLO)-derived cone spacing measures in eyes with inherited retinal degenerations (IRD) and in normal eyes. METHODS. Twenty IRD patients and 10 visually normal subjects underwent AOSLO imaging at two visits separated by no more than 1 month (NCT00254605). Cone spacing was measured in multiple macular regions in each image by three independent graders. Variability of cone spacing measures between visits, between graders, and between eyes was determined and correlated with standard clinical measures. RESULTS. Cone spacing was measured in 2905 regions. Interobserver agreement was high both in normal eyes and eyes with IRD (mean intraclass correlation coefficient [ICC] ¼ 0.838 for normal and 0.892 for eyes with IRD). Cone spacing measures were closely correlated between visits (ICC > 0.869 for both study groups). Mean relative intervisit spacing difference (absolute difference in measures divided by the mean at each region) was 4.0% for normal eyes and 4.9% for eyes with IRD. Cone spacing measures from fellow eyes of the same subject showed strong agreement for all subjects (ICC > 0.85 for both study groups). CONCLUSIONS. Adaptive optics scanning laser ophthalmoscopy-derived macular cone spacing measures were correlated between observers, visits, and fellow eyes of the same subject in normal eyes and in eyes with IRD. This information may help establish the role of cone spacing measures derived from images of the cone mosaic obtained with AOSLO as a sensitive biomarker for longitudinal tracking of photoreceptor loss during disease progression and in response to treatment. (ClinicalTrials.gov number, NCT00254605.
- …