346 research outputs found
Activity and magnetic fields on stars from radio observations
Radio observations explain certain kinds of stellar activity and reliable estimates of magnetic field strengths are derived for the radio emitting regions. Radio observation of flare stars shows rapidly varying bursts of radiation with frequencies of up to 5 GHz. The inferred brightness temperatures of these bursts (10 to the 10th power to 10 to the 14th power) imply that the radiation is coherent. Two mechanisms are proposed to generate such radiation: (1) plasma radiation, and (2) electron cyclotron masers. The high brightness temperatures of the bursts up to 10 to the 20th power K) makes the latter the most plausible. For bursts in the 5 GHz range, the magnetic field strength would be approximately 900 Gauss
Radio imaging of flares
High resolution (arcseconds to ten of arcseconds) mapping of solar microwave bursts has recently been achieved. The properties of the radio images that have been reported and, so far as possible, the relation of the radio sources to X-ray observations of the same flares are discussed
Turbulence and wave particle interactions in solar-terrestrial plasmas
Theoretical modelling of two dimensional compressible convection in the Sun shows that convective flows can extend over many pressure scale heights without the nonlinear motions becoming supersonic, and that compressional work arising from pressure fluctuations can be comparable to that by buoyancy forces. These results are contrary to what was supposed in prevailing mixing length models for solar convection, and they imply a much greater degree of organized flow extending over the full depth of the convection zone. The nonlinear penetration of motions into the stable region below the convection zone was emphasized. These compressible flows are dominated by downward directed plumes in the unstable zone. Their strong penetration into the region of stable stratification below excites a broad spectrum of internal gravity waves there, and these in turn feed back upon the convection in the unstable zone to produce a rich time dependence
Study of the solar corona using radio and space observations
The physics of coronal transients, the characteristics of radiation and accelerated particles at the time of flares, and the density/temperature structure of the transition region and corona and the coronal magnetic field are investigated
Electron-cyclotron maser emission during flares: Emission in various modes and temporal variations
Absorption of radiation at the electron-cyclotron frequency, OMEGA sub e, generated by the electron-cyclotron maser instability was proposed as a possible mechanism for transporting energy and heating of the corona during flares. Radiation from the same instability but at harmonics of OMEGA sub e is believed to be the source of solar microwave spike bursts. The actual mode and frequency of the dominant emission from the maser instability is shown to be dependent on: (1) the plasma temperature, (2) the form of the energetic electron distribution, and (3) on the ratio of the plasma frequency omega sub p to OMEGA sub e. As a result, the emission along a flux tube can vary, with emission at harmonics being favored in regions where omega sub p/OMEGA sub e approx. equal to or greater than 1. Changes in the plasma density and temperature in the source region associated with the flare can also cause the characteristics of the emission to change in time
Heating and acceleration of coronal and chromospheric ions during solar flares
One-dimensional, electrostatic, particle-in-cell simulations are used to explore two mechanisms proposed to explain turbulent broadening of soft x ray emission lines of heavy ions observed during solar flares and the presence of blue-shifted components. Results from the simulations are in qualitative agreement with the observations
Chromospheric-coronal coupling during solar flares: Current systems and particle acceleration
Two-dimensional (three velocity) electrostatic particle simulations are used to investigate the particle heating and acceleration associated with the impulsive phase of a solar flare. A crossfield current in the high corona (which is presumably driven by reconnection processes) is used to initiate the flare. Due to the differential motion of the electrons and ions, currents, and associated quasi-static electric fields are generated with the primary current and balancing return current being on adjacent field lines. These currents extend from the corona down into the chromosphere. Electrons can be accelerated to energies exceeding 100 keV on short time scales via the quasi-static fields and wave-particle interactions. The spectra of these electrons has a broken power-law distribution which hardens in time. The spatially separate primary and return currents are closed by the cross-field acceleration of the ambient ions into the primary current regions. These ions are then accelerated upwards into the corona by the same quasi-static electric field accelerating the electrons downwards. This acceleration can account for the broadened stationary and weak blue shifted component seen in soft x ray line emissions and enhancements in heavy ion abundances seen in the solar wind in associations with solar flares
An alternative to the plasma emission model: Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts
1.5D PIC, relativistic, fully electromagnetic (EM) simulations are used to
model EM wave emission generation in the context of solar type III radio
bursts. The model studies generation of EM waves by a super-thermal, hot beam
of electrons injected into a plasma thread that contains uniform longitudinal
magnetic field and a parabolic density gradient. In effect, a single magnetic
line connecting Sun to earth is considered, for which several cases are
studied. (i) We find that the physical system without a beam is stable and only
low amplitude level EM drift waves (noise) are excited. (ii) The beam injection
direction is controlled by setting either longitudinal or oblique electron
initial drift speed, i.e. by setting the beam pitch angle. In the case of zero
pitch angle, the beam excites only electrostatic, standing waves, oscillating
at plasma frequency, in the beam injection spatial location, and only low level
EM drift wave noise is also generated. (iii) In the case of oblique beam pitch
angles, again electrostatic waves with same properties are excited. However,
now the beam also generates EM waves with the properties commensurate to type
III radio bursts. The latter is evidenced by the wavelet analysis of transverse
electric field component, which shows that as the beam moves to the regions of
lower density, frequency of the EM waves drops accordingly. (iv) When the
density gradient is removed, electron beam with an oblique pitch angle still
generates the EM radiation. However, in the latter case no frequency decrease
is seen. Within the limitations of the model, the study presents the first
attempt to produce simulated dynamical spectrum of type III radio bursts in
fully kinetic plasma model. The latter is based on 1.5D non-zero pitch angle
(non-gyrotropic) electron beam, that is an alternative to the plasma emission
classical mechanism.Comment: Physics of Plasmas, in press, May 2011 issue (final accepted version
Statistical Survey of Type III Radio Bursts at Long Wavelengths Observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves Instruments: Radio Flux Density Variations with Frequency
We have performed a statistical study of Type III radio bursts observed
by Solar TErrestrial RElations Observatory (STEREO)/Waves between May 2007 and
February 2013. We have investigated the flux density between kHz and
MHz. Both high- and low-frequency cutoffs have been observed in of
events suggesting an important role of propagation. As already reported by
previous authors, we observed that the maximum flux density occurs at MHz on
both spacecraft. We have developed a simplified analytical model of the flux
density as a function of radial distance and compared it to the STEREO/Waves
data.Comment: published in Solar Physic
Energetic particles in solar flares. Chapter 4 in the proceedings of the 2nd Skylab Workshop on Solar Flares
The recent direct observational evidence for the acceleration of particles in solar flares, i.e. radio emission, bremsstrahlung X-ray emission, gamma-ray line and continuum emission, as well as direct observations of energetic electrons and ions, are discussed and intercorrelated. At least two distinct phases of acceleration of solar particles exist that can be distinguished in terms of temporal behavior, type and energy of particles accelerated and the acceleration mechanism. Bulk energization seems the likely acceleration mechanism for the first phase while Fermi mechanism is a viable candidate for the second one
- …