587 research outputs found
Left-invariant evolutions of wavelet transforms on the Similitude Group
Enhancement of multiple-scale elongated structures in noisy image data is
relevant for many biomedical applications but commonly used PDE-based
enhancement techniques often fail at crossings in an image. To get an overview
of how an image is composed of local multiple-scale elongated structures we
construct a multiple scale orientation score, which is a continuous wavelet
transform on the similitude group, SIM(2). Our unitary transform maps the space
of images onto a reproducing kernel space defined on SIM(2), allowing us to
robustly relate Euclidean (and scaling) invariant operators on images to
left-invariant operators on the corresponding continuous wavelet transform.
Rather than often used wavelet (soft-)thresholding techniques, we employ the
group structure in the wavelet domain to arrive at left-invariant evolutions
and flows (diffusion), for contextual crossing preserving enhancement of
multiple scale elongated structures in noisy images. We present experiments
that display benefits of our work compared to recent PDE techniques acting
directly on the images and to our previous work on left-invariant diffusions on
orientation scores defined on Euclidean motion group.Comment: 40 page
New Exact and Numerical Solutions of the (Convection-)Diffusion Kernels on SE(3)
We consider hypo-elliptic diffusion and convection-diffusion on , the quotient of the Lie group of rigid body motions SE(3) in
which group elements are equivalent if they are equal up to a rotation around
the reference axis. We show that we can derive expressions for the convolution
kernels in terms of eigenfunctions of the PDE, by extending the approach for
the SE(2) case. This goes via application of the Fourier transform of the PDE
in the spatial variables, yielding a second order differential operator. We
show that the eigenfunctions of this operator can be expressed as (generalized)
spheroidal wave functions. The same exact formulas are derived via the Fourier
transform on SE(3). We solve both the evolution itself, as well as the
time-integrated process that corresponds to the resolvent operator.
Furthermore, we have extended a standard numerical procedure from SE(2) to
SE(3) for the computation of the solution kernels that is directly related to
the exact solutions. Finally, we provide a novel analytic approximation of the
kernels that we briefly compare to the exact kernels.Comment: Revised and restructure
Perceptual organization in image analysis : a mathematical approach based on scale, orientation and curvature
The explicit solutions of linear left-invariant 2nd-order evolution equations on the 2D-Euclidean motion group
Locally Adaptive Frames in the Roto-Translation Group and their Applications in Medical Imaging
Locally adaptive differential frames (gauge frames) are a well-known
effective tool in image analysis, used in differential invariants and
PDE-flows. However, at complex structures such as crossings or junctions, these
frames are not well-defined. Therefore, we generalize the notion of gauge
frames on images to gauge frames on data representations defined on the extended space of positions and
orientations, which we relate to data on the roto-translation group ,
. This allows to define multiple frames per position, one per
orientation. We compute these frames via exponential curve fits in the extended
data representations in . These curve fits minimize first or second
order variational problems which are solved by spectral decomposition of,
respectively, a structure tensor or Hessian of data on . We include
these gauge frames in differential invariants and crossing preserving PDE-flows
acting on extended data representation and we show their advantage compared
to the standard left-invariant frame on . Applications include
crossing-preserving filtering and improved segmentations of the vascular tree
in retinal images, and new 3D extensions of coherence-enhancing diffusion via
invertible orientation scores
A PDE Approach to Data-driven Sub-Riemannian Geodesics in SE(2)
We present a new flexible wavefront propagation algorithm for the boundary
value problem for sub-Riemannian (SR) geodesics in the roto-translation group
with a metric tensor depending on a smooth
external cost , , computed from
image data. The method consists of a first step where a SR-distance map is
computed as a viscosity solution of a Hamilton-Jacobi-Bellman (HJB) system
derived via Pontryagin's Maximum Principle (PMP). Subsequent backward
integration, again relying on PMP, gives the SR-geodesics. For
we show that our method produces the global minimizers. Comparison with exact
solutions shows a remarkable accuracy of the SR-spheres and the SR-geodesics.
We present numerical computations of Maxwell points and cusp points, which we
again verify for the uniform cost case . Regarding image
analysis applications, tracking of elongated structures in retinal and
synthetic images show that our line tracking generically deals with crossings.
We show the benefits of including the sub-Riemannian geometry.Comment: Extended version of SSVM 2015 conference article "Data-driven
Sub-Riemannian Geodesics in SE(2)
Diffusion on the 3D Euclidean motion group for enhancement of HARDI data
In previous work we studied linear and nonlinear left-invariant diffusion equations on the 2D Euclidean motion group SE(2), for the purpose of crossing-preserving coherence-enhancing diffusion on 2D images. In this paper we study left-invariant diffusion on the 3D Euclidean motion group SE(3), which is useful for processing three-dimensional data. In particular, it is useful for the processing of High Angular Resolution Diffusion Imaging (HARDI) data, since these data can be considered as orientation scores directly, without the need to transform the HARDI data to a different form. In principle, all theory of the 2D case can be mapped to the 3D case. However, one of the complicating factors is that all practical 3D orientation scores are not functions on the entire group SE(3), but rather on a coset space of the group. We will show how we can still conceptually apply processing on the entire group by requiring the operations to preserve the introduced notion of alpha-right-invariance of such functions on SE(3). We introduce left-invariant derivatives and describe how to estimate tangent vectors that locally fit best to the elongated structures in the 3D orientation score. We propose generally applicable techniques for smoothing and enhancing functions on SE(3) using left-invariant diffusion on the group. Finally, we will discuss implementational issues and show a number of results for linear diffusion on artificial HARDI data
- β¦