222 research outputs found

    Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide.

    Get PDF
    The layered transition metal dichalcogenides have attracted considerable interest for their unique electronic and optical properties. While the monolayer MoS2 exhibits a direct bandgap, the multilayer MoS2 is an indirect bandgap semiconductor and generally optically inactive. Here we report electric-field-induced strong electroluminescence in multilayer MoS2. We show that GaN-Al2O3-MoS2 and GaN-Al2O3-MoS2-Al2O3-graphene vertical heterojunctions can be created with excellent rectification behaviour. Electroluminescence studies demonstrate prominent direct bandgap excitonic emission in multilayer MoS2 over the entire vertical junction area. Importantly, the electroluminescence efficiency observed in multilayer MoS2 is comparable to or higher than that in monolayers. This strong electroluminescence can be attributed to electric-field-induced carrier redistribution from the lowest energy points (indirect bandgap) to higher energy points (direct bandgap) in k-space. The electric-field-induced electroluminescence is general for other layered materials including WSe2 and can open up a new pathway towards transition metal dichalcogenide-based optoelectronic devices

    Large area growth and electrical properties of p-type WSe2 atomic layers.

    Get PDF
    Transition metal dichacogenides represent a unique class of two-dimensional layered materials that can be exfoliated into single or few atomic layers. Tungsten diselenide (WSe(2)) is one typical example with p-type semiconductor characteristics. Bulk WSe(2) has an indirect band gap (∼ 1.2 eV), which transits into a direct band gap (∼ 1.65 eV) in monolayers. Monolayer WSe(2), therefore, is of considerable interest as a new electronic material for functional electronics and optoelectronics. However, the controllable synthesis of large-area WSe(2) atomic layers remains a challenge. The studies on WSe(2) are largely limited by relatively small lateral size of exfoliated flakes and poor yield, which has significantly restricted the large-scale applications of the WSe(2) atomic layers. Here, we report a systematic study of chemical vapor deposition approach for large area growth of atomically thin WSe(2) film with the lateral dimensions up to ∼ 1 cm(2). Microphotoluminescence mapping indicates distinct layer dependent efficiency. The monolayer area exhibits much stronger light emission than bilayer or multilayers, consistent with the expected transition to direct band gap in the monolayer limit. The transmission electron microscopy studies demonstrate excellent crystalline quality of the atomically thin WSe(2). Electrical transport studies further show that the p-type WSe(2) field-effect transistors exhibit excellent electronic characteristics with effective hole carrier mobility up to 100 cm(2) V(-1) s(-1) for monolayer and up to 350 cm(2) V(-1) s(-1) for few-layer materials at room temperature, comparable or well above that of previously reported mobility values for the synthetic WSe(2) and comparable to the best exfoliated materials

    Heterointegration of Pt/Si/Ag Nanowire Photodiodes and Their Photocatalytic Properties

    Get PDF
    Photocatalyst mediated photoelectrochemical processes can make use of the photogenerated electrons and holes onsite for photocatalytic redox reactions, and enable the harness and conversion of solar energy into chemical energy, in analogy to natural photosynthesis. However, the photocatalysts available to date are limited by either poor efficiency in the visible light range or insufficient photoelectrochemical stability. Here, it is shown that a Pt/Si/Ag nanowire heterostructure can be rationally synthesized to integrate a nanoscale metal-semiconductor Schottky diode encased in a protective insulating shell with two exposed metal catalysts. The synthesis of Pt/Si/Ag nanowire diodes involves a scalable process including the formation of silicon nanowire array through wet chemical etching, electrodeposition of platinum and photoreduction of silver. The Pt/Si/Ag diodes exhibit highly efficient photocatalytic activity for a wide range of applications including environmental remediation and solar fuel production in the visible range. In this article, photodegradation of indigo carmine and 4-nitrophenol are used to evaluate the photoactivity of Pt/Si/Ag diodes. The Pt/Si/Ag diodes also show high activity for photoconversion of formic acid into carbon dioxide and hydrogen

    A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials

    Get PDF
    The electrochemical carbon dioxide reduction reaction (CO_2RR) presents a viable approach to recycle CO_2 gas into low carbon fuels. Thus, the development of highly active catalysts at low overpotential is desired for this reaction. Herein, a high‐yield synthesis of unique star decahedron Cu nanoparticles (SD‐Cu NPs) electrocatalysts, displaying twin boundaries (TBs) and multiple stacking faults, which lead to low overpotentials for methane (CH_4) and high efficiency for ethylene (C_2H_4) production, is reported. Particularly, SD‐Cu NPs show an onset potential for CH_4 production lower by 0.149 V than commercial Cu NPs. More impressively, SD‐Cu NPs demonstrate a faradaic efficiency of 52.43% ± 2.72% for C_2H_4 production at −0.993 ± 0.0129 V. The results demonstrate that the surface stacking faults and twin defects increase CO binding energy, leading to the enhanced CO_2RR performance on SD‐Cu NPs

    Gate-induced insulator to band-like transport transition in organolead halide perovskite

    Full text link
    Understanding the intrinsic charge transport in organolead halide perovskites is essential for the development of high-efficiency photovoltaics and other optoelectronic devices. Despite the rapid advancement of the organolead halide perovskite in photovoltaic and optoelectronic applications, the intrinsic charge carrier transport in these materials remains elusive partly due to the difficulty of fabricating electrical devices and obtaining good electrical contact. Here, we report the fabrication of organolead halide perovskite microplates with monolayer graphene as low barrier electrical contact. A systematic charge transport studies reveal an insulator to band-like transport transition. Our studies indicate that the insulator to band-like transport transition depends on the orthorhombic-to-tetragonal phase transition temperature and defect densities of the organolead halide perovskite microplates. Our findings are not only important for the fundamental understanding of charge transport behavior but also offer valuable practical implications for photovoltaics and optoelectronic applications based on the organolead halide perovskite.Comment: 18 pages, 5 figure

    Enhanced interlayer neutral excitons and trions in trilayer van der Waals heterostructures

    Get PDF
    Vertically stacked van der Waals heterostructures constitute a promising platform for providing tailored band alignment with enhanced excitonic systems. Here we report observations of neutral and charged interlayer excitons in trilayer WSe2-MoSe2-WSe2 van der Waals heterostructures and their dynamics. The addition of a WSe2 layer in the trilayer leads to significantly higher photoluminescence quantum yields and tunable spectral resonance compared to its bilayer heterostructures at cryogenic temperatures. The observed enhancement in the photoluminescence quantum yield is due to significantly larger electron-hole overlap and higher light absorbance in the trilayer heterostructure, supported via first-principle pseudopotential calculations based on spin-polarized density functional theory. We further uncover the temperature- and power-dependence, as well as time-resolved photoluminescence of the trilayer heterostructure interlayer neutral excitons and trions. Our study elucidates the prospects of manipulating light emission from interlayer excitons and designing atomic heterostructures from first-principles for optoelectronics.Comment: 25 pages, 5 figures(Maintext). 9 pages, 7 figures(Supplementary Information). - Accepted for publication in npg: 2D materials and applications and reformatted to its standard. - Updated co-authors and references. - Title and abstract are modified for clarity. - Errors have been corrected, npg: 2D materials and applications (2018