70 research outputs found

    Analysis on One-Stage SSHC Rectifier for Piezoelectric Vibration Energy Harvesting

    Full text link
    Conventional SSHI (synchronized switch harvesting on inductor) has been believed to be one of the most efficient interface circuits for piezoelectric vibration energy harvesting systems. It employs an inductor and the resulting RLC loop to synchronously invert the charge across the piezoelectric material to avoid charge and energy loss due to charging its internal capacitor (CPC_P). The performance of the SSHI circuit greatly depends on the inductor and a large inductor is often needed; hence significantly increases the volume of the system. An efficient interface circuit using a synchronous charge inversion technique, named as SSHC, was proposed recently. The SSHC rectifier utilizes capacitors, instead of inductors, to flip the voltage across the harvester. For a one-stage SSHC rectifier, one single intermediate capacitor (CTC_T) is employed to temporarily store charge flowed from CPC_P and inversely charge CPC_P to perform the charge inversion. In previous studies, the voltage flip efficiency achieves 1/3 when CT=CPC_T = C_P. This paper presents that the voltage flip efficiency can be further increased to approach 1/2 if CTC_T is chosen to be much larger than CPC_P

    Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting

    Get PDF
    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0g of acceleration across a matched load of 70kΩ. With a natural frequency of 980Hz, the fundamental mode direct resonance had a −3dB bandwidth of 55Hz, in contrast to the 314Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478Hz

    A micromachined device describing over a hundred orders of parametric resonance

    Get PDF
    The following article appeared in Jia, Y., Du, S., Arroyo, E., & Seshia, A. A. (2018). A micromachined device describing over a hundred orders of parametric resonance. Applied Physics Letters, 112, 171901. https://doi.org/10.1063/1.5024667 and may be found at https://aip.scitation.org/doi/10.1063/1.5024667. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing.Parametric resonance in mechanical oscillators can onset from the periodic modulation of at least one of the system parameters, and the behaviour of the principal (1st order) parametric resonance has long been well established. However, the theoretically predicted higher orders of parametric resonance, in excess of the first few orders, have mostly been experimentally elusive due to the fast diminishing instability intervals. A recent paper experimentally reported up to 28 orders in a micromachined membrane oscillator. This paper reports the design and characterisation of a micromachined membrane oscillator with a segmented proof mass topology, in an attempt to amplify the inherent nonlinearities within the membrane layer. The resultant oscillator device exhibited up to over a hundred orders of parametric resonance, thus experimentally validating these ultra-high orders as well as overlapping instability transitions between these higher orders. This research introduces design possibilities for the transducer and dynamic communities, by exploiting the behaviour of these previously elusive higher order resonant regimes

    An Efficient Inductorless Dynamically Configured Interface Circuit for Piezoelectric Vibration Energy Harvesting

    Get PDF
    Vibration energy harvesting based on piezoelectric materials is of interest in several applications such as in powering remote distributed wireless sensor nodes for structural health monitoring. Synchronized switch harvesting on inductor and synchronous electric charge extraction circuits show good power efficiency among reported power management circuits; however, limitations exist due to inductors employed, adaption of response to varying excitation levels, and the synchronized switch damping (SSD) effect. In this paper, an inductorless dynamically configured interface circuit is proposed, which is able to configure the connection of two piezoelectric materials in parallel or in series by periodically evaluating the ambient excitation level. The proposed circuit is designed and fabricated in a 0.35 μHV CMOS process.The fabricated circuit is cointegrated with a piezoelectric bimorph energy harvester and the performance is experimentally validated. With a low power consumption (0.5 μW), the measured results show that the proposed rectifier can provide a 4.5 × boost in harvested energy compared to the conventional full-bridge rectifier without employing an inductor. It also shows a high power efficiency over a wide range of excitation levels and is less susceptible to SSD

    Real World Assessment of an Auto-parametric Electromagnetic Vibration Energy Harvester

    Get PDF
    The convention within the eld of vibration energy harvesting (VEH) has revolved around designing resonators with natural frequencies that match single fixed frequency sinusoidal input. However, real world vibrations can be random, multi-frequency, broadband and time-varying in nature. Building upon previous work on auto-parametric resonance, the fundamentally different approach allows multiple axes vibration and has the potential to achieve higher power density as well as wider operational frequency bandwidth. This paper presents the power response of a packaged auto-parametric VEH prototype (practical operational volume 126 cm^3) towards various real world vibration sources including vibration of a bridge, a compressor motor as well as an automobile. At auto-parametric resonance (driven at 23.5 Hz and 1 grms), the prototype can output a peak of 78.9 mW and 4.5 Hz of -3dB bandwidth. Furthermore, up to ~1 mW of average power output was observed from the harvester on the Forth Road Bridge. The harvested electrical energy from various real world sources were used to power up a power conditioning circuit, a wireless sensor mote, a MEMS (micro-electromechanical system) accelerometer and other low power sensors. This demonstrates the concept of self-sustaining vibration-powered wireless sensor systems in real world scenarios, to potentially realise maintenance-free autonomous structural health and condition monitoring.This work was supported by EPSRC (grant EP/L010917/1) and the Cambridge Centre for Smart Infrastructure and Construction

    Autoparametric resonance in a piezoelectric MEMS vibration energy harvester

    Get PDF
    This paper reports for the first time the achievement of autoparametric resonance in a piezoelectric MEMS energy harvester without compromising transducer strain energy optimisation, in order to enhance the efficiency of vibration energy harvesting. The autoparametrically driven energy harvester in excess of a two-fold increase in power output than the same device driven into direct resonance at the same acceleration level, and about an order of magnitude higher in power density normalised to acceleration squared relative to the state-of-the-art

    Interdigitated cantilever array topology for low frequency MEMS vibration energy harvesting

    Get PDF
    Micro-fabricated vibration energy harvesters enable merits such as miniaturisation, economies of scale for manufacturing, and ease of integration with semiconductor IC technologies. However, the frequency range of ambient vibration is generally low (10's Hz to 100's Hz). Existing MEMS vibration energy harvesters that target these frequencies typically are in the centimetre scale range. This sacrifices the miniaturisation aspect as well as introducing new challenges in packaging and integration for the unconventionally large MEMS devices. This paper proposes a new interdigitated fork cantilever array topology, which allows for up to about a third reduction in resonant frequency compared to the classical cantilever topology, for the same design area and without compromising on power optimisation. Further resonant frequency reduction is also possible, but at the expense of power optimisation. This opens up design flexibility to achieve low frequency MEMS resonators that are more suitable to practically target ambient vibration, without sacrificing the aforementioned merits of MEMS technology

    Shock reliability enhancement for MEMS vibration energy harvesters with nonlinear air damping as a soft stopper

    Get PDF
    This paper presents a novel application of utilising nonlinear air damping as a soft mechanical stopper to increase the shock reliability for microelectromechanical systems (MEMS) vibration energy harvesters. The theoretical framework for nonlinear air damping is constructed for MEMS vibration energy harvesters operating in different air pressure levels, and characterisation experiments are conducted to establish the relationship between air pressure and nonlinear air damping coefficient for rectangular cantilever MEMS micro cantilevers with different proof masses. Design guidelines on choosing the optimal air pressure level for different MEMS vibration energy harvesters based on the trade-off between harvestable energy and the device robustness are presented, and random excitation experiments are performed to verify the robustness of MEMS vibration energy harvesters with nonlinear air damping as soft stoppers to limit the maximum deflection distance and increase the shock reliability of the device

    Optimisation and Management of Energy Generated by a Multifunctional MFC-Integrated Composite Chassis for Rail Vehicles

    Get PDF
    With the advancing trend towards lighter and faster rail transport, there is an increasing interest in integrating composite and advanced multifunctional materials in order to infuse smart sensing and monitoring, energy harvesting and wireless capabilities within the otherwise purely mechanical rail structures and the infrastructure. This paper presents a holistic multiphysics numerical study, across both mechanical and electrical domains, that describes an innovative technique of harvesting energy from a piezoelectric micro fiber composites (MFC) built-in composite rail chassis structure. Representative environmental vibration data measured from a rail cabin have been critically leveraged here to help predict the actual vibratory and power output behaviour under service. Time domain mean stress distribution data from the Finite Element simulation were used to predict the raw AC voltage output of the MFCs. Conditioned power output was then calculated using circuit simulation of several state-of-the-art power conditioning circuits. A peak instantaneous rectified power of 181.9 mW was obtained when eight-stage Synchronised Switch Harvesting Capacitors (SSHC) from eight embedded MFCs were located. The results showed that the harvested energy could be sufficient to sustain a self-powered structural health monitoring system with wireless communication capabilities. This study serves as a theoretical foundation of scavenging for vibrational power from the ambient state in a rail environment as well as to pointing to design principles to develop regenerative and power neutral smart vehicles
    • …
    corecore