355 research outputs found
A three-pass system combination framework by combining multiple hypothesis alignment methods
So far, many effective hypothesis alignment metrics have been proposed and applied to the system combination, such as TER, HMM, ITER and IHMM. In addition, the Minimum Bayes-risk (MBR) decoding and the confusion network (CN) have become the state-of-the art techniques in system combination. In this paper, we present a three-pass system combination strategy that can combine hypothesis alignment results derived from different alignment metrics to generate a better translation. Firstly the different alignment metrics are carried out to align the backbone and hypotheses, and the individual CN is built corresponding to each alignment results; then we construct a super network by merging the multiple metric-based CN and generate a consensus output. Finally a modified consensus network MBR (ConMBR) approach is employed to search a best translation. Our proposed strategy out performs the best single CN as well as the best single system in our experiments on NIST Chinese-to-English test set
Using TERp to augment the system combination for SMT
TER-Plus (TERp) is an extended TER evaluation metric incorporating morphology, synonymy and paraphrases.
There are three new edit operations in TERp: Stem Matches, Synonym Matches and Phrase Substitutions (Para-phrases). In this paper, we propose a TERp-based augmented system combination in terms of the backbone selection and consensus decoding network. Combining the new properties\ud
of the TERp, we also propose a two-pass decoding strategy for the lattice-based phrase-level confusion network(CN) to generate the final result. The experiments conducted on the NIST2008 Chinese-to-English test set show that our TERp-based augmented system combination framework achieves significant improvements in terms of BLEU and TERp scores compared to the state-of-the-art word-level system combination framework and a TER-based combination strategy
A discriminative latent variable-based "DE" classifier for Chinese–English SMT
Syntactic reordering on the source-side
is an effective way of handling word order
differences. The (DE) construction
is a flexible and ubiquitous syntactic
structure in Chinese which is a major
source of error in translation quality.
In this paper, we propose a new classifier
model — discriminative latent variable
model (DPLVM) — to classify the
DE construction to improve the accuracy
of the classification and hence the translation
quality. We also propose a new feature
which can automatically learn the reordering
rules to a certain extent. The experimental
results show that the MT systems
using the data reordered by our proposed
model outperform the baseline systems
by 6.42% and 3.08% relative points
in terms of the BLEU score on PB-SMT
and hierarchical phrase-based MT respectively.
In addition, we analyse the impact
of DE annotation on word alignment and
on the SMT phrase table
The impact of source-side syntactic reordering on hierarchical phrase-based SMT
Syntactic reordering has been demonstrated
to be helpful and effective for handling
different word orders between source
and target languages in SMT. However, in
terms of hierarchial PB-SMT (HPB), does
the syntactic reordering still has a significant
impact on its performance? This
paper introduces a reordering approach
which explores the { (DE) grammatical
structure in Chinese. We employ
the Stanford DE classifier to recognise
the DE structures in both training and
test sentences of Chinese, and then perform
word reordering to make the Chinese
sentences better match the word order
of English. The annotated and reordered
training data and test data are applied
to a re-implemented HPB system and
the impact of the DE construction is examined.
The experiments are conducted
on the NIST 2008 evaluation data and experimental
results show that the BLEU
and METEOR scores are significantly improved
by 1.83/8.91 and 1.17/2.73 absolute/
relative points respectively
An incremental three-pass system combination framework by combining multiple hypothesis alignment methods
System combination has been applied successfully to various machine translation tasks in recent years. As is known, the hypothesis alignment method is a critical factor for the
translation quality of system combination. To date, many effective hypothesis alignment metrics have been proposed and applied to the system combination, such as TER, HMM,
ITER, IHMM, and SSCI. In addition, Minimum Bayes-risk (MBR) decoding and confusion networks (CN) have become state-of-the-art techniques in system combination. In this paper,
we examine different hypothesis alignment approaches and investigate how much the hypothesis alignment results impact on system combination, and finally present a three-pass system combination strategy that can combine hypothesis alignment results derived from multiple alignment metrics to generate a better translation. Firstly, these different alignment metrics are carried out to align the backbone and hypotheses, and the individual CNs are built corresponding to each set of alignment results; then we construct a ‘super network’ by merging the multiple metric-based CNs to generate a consensus output. Finally a modified MBR network approach is employed to find the best overall translation. Our proposed strategy outperforms the best single confusion network as well as the best single system in our experiments on the NIST Chinese-to-English test set and the WMT2009 English-to-French system combination shared test set
Incorporating source-language paraphrases into phrase-based SMT with confusion networks
To increase the model coverage, sourcelanguage paraphrases have been utilized to boost SMT system performance. Previous
work showed that word lattices constructed from paraphrases are able to reduce out-ofvocabulary words and to express inputs in different ways for better translation quality.
However, such a word-lattice-based method suffers from two problems: 1) path duplications in word lattices decrease the capacities for potential paraphrases; 2) lattice decoding in SMT dramatically increases the search space and results in poor time efficiency. Therefore, in this paper, we adopt word confusion networks as the input structure to carry source-language paraphrase information. Similar to previous work, we use word lattices to build word confusion networks for merging of duplicated paths and faster decoding. Experiments are carried out on small-, medium- and large-scale English–
Chinese translation tasks, and we show that compared with the word-lattice-based method, the decoding time on three tasks is reduced significantly (up to 79%) while comparable
translation quality is obtained on the largescale task
Source-side context-informed hypothesis alignment for combining outputs from machine translation systems
This paper presents a new hypothesis alignment method for combining outputs of multiple machine translation (MT) systems. Traditional hypothesis alignment algorithms such
as TER, HMM and IHMM do not directly utilise the context information of the source side but rather address the alignment issues via the output data itself. In this paper, a source-side context-informed (SSCI) hypothesis alignment method is proposed to carry out the word alignment and word reordering issues. First of all, the source–target word alignment links are produced as the hidden variables by exporting source phrase spans during the translation decoding process. Secondly, a mapping strategy and normalisation model are employed to acquire the 1-
to-1 alignment links and build the confusion network (CN). The source-side context-based method outperforms the state-of-the-art TERbased alignment model in our experiments
on the WMT09 English-to-French and NIST Chinese-to-English data sets respectively. Experimental results demonstrate that our proposed approach scores consistently among the
best results across different data and language pair conditions
Facilitating translation using source language paraphrase lattices
For resource-limited language pairs, coverage of the test set by the parallel corpus is an important factor that affects translation quality in two respects: 1) out of vocabulary words; 2) the same information in an input
sentence can be expressed in different ways, while current phrase-based SMT systems cannot automatically select an alternative way to transfer the same information. Therefore,
given limited data, in order to facilitate translation
from the input side, this paper proposes a novel method to reduce the translation difficulty using source-side lattice-based paraphrases. We utilise the original phrases from the input sentence and the corresponding paraphrases to build a lattice with estimated weights for each edge to improve translation quality. Compared to the baseline system, our method achieves relative improvements of 7.07%, 6.78% and 3.63% in terms of BLEU score on small, medium and largescale
English-to-Chinese translation tasks respectively. The results show that the proposed method is effective not only for resourcelimited language pairs, but also for resource sufficient pairs to some extent
An augmented three-pass system combination framework: DCU combination system for WMT 2010
This paper describes the augmented threepass
system combination framework of
the Dublin City University (DCU) MT
group for the WMT 2010 system combination
task. The basic three-pass framework
includes building individual confusion
networks (CNs), a super network, and
a modified Minimum Bayes-risk (mCon-
MBR) decoder. The augmented parts for
WMT2010 tasks include 1) a rescoring
component which is used to re-rank the
N-best lists generated from the individual
CNs and the super network, 2) a new hypothesis
alignment metric – TERp – that
is used to carry out English-targeted hypothesis
alignment, and 3) more different
backbone-based CNs which are employed
to increase the diversity of the
mConMBR decoding phase. We took
part in the combination tasks of Englishto-
Czech and French-to-English. Experimental
results show that our proposed
combination framework achieved 2.17 absolute
points (13.36 relative points) and
1.52 absolute points (5.37 relative points)
in terms of BLEU score on English-to-
Czech and French-to-English tasks respectively
than the best single system. We
also achieved better performance on human
evaluation
Improved phrase-based SMT with syntactic reordering patterns learned from lattice scoring
In this paper, we present a novel approach to incorporate source-side syntactic reordering patterns into phrase-based SMT. The main contribution of this work is to use the lattice scoring approach to exploit and utilize reordering
information that is favoured by the baseline PBSMT system. By referring to the parse trees of the training corpus, we represent the observed reorderings with source-side
syntactic patterns. The extracted patterns are then used to convert the parsed inputs into word lattices, which contain both the original source sentences and their potential reorderings. Weights of the word lattices are estimated from the observations of the syntactic reordering patterns in the training corpus. Finally, the PBSMT system is tuned
and tested on the generated word lattices to show the benefits of adding potential sourceside reorderings in the inputs. We confirmed the effectiveness of our proposed method on a medium-sized corpus for Chinese-English
machine translation task. Our method outperformed the baseline system by 1.67% relative on a randomly selected testset and 8.56% relative on the NIST 2008 testset in terms of BLEU score
- …