5,625 research outputs found
Aspiration Dynamics of Multi-player Games in Finite Populations
Studying strategy update rules in the framework of evolutionary game theory,
one can differentiate between imitation processes and aspiration-driven
dynamics. In the former case, individuals imitate the strategy of a more
successful peer. In the latter case, individuals adjust their strategies based
on a comparison of their payoffs from the evolutionary game to a value they
aspire, called the level of aspiration. Unlike imitation processes of pairwise
comparison, aspiration-driven updates do not require additional information
about the strategic environment and can thus be interpreted as being more
spontaneous. Recent work has mainly focused on understanding how aspiration
dynamics alter the evolutionary outcome in structured populations. However, the
baseline case for understanding strategy selection is the well-mixed population
case, which is still lacking sufficient understanding. We explore how
aspiration-driven strategy-update dynamics under imperfect rationality
influence the average abundance of a strategy in multi-player evolutionary
games with two strategies. We analytically derive a condition under which a
strategy is more abundant than the other in the weak selection limiting case.
This approach has a long standing history in evolutionary game and is mostly
applied for its mathematical approachability. Hence, we also explore strong
selection numerically, which shows that our weak selection condition is a
robust predictor of the average abundance of a strategy. The condition turns
out to differ from that of a wide class of imitation dynamics, as long as the
game is not dyadic. Therefore a strategy favored under imitation dynamics can
be disfavored under aspiration dynamics. This does not require any population
structure thus highlights the intrinsic difference between imitation and
aspiration dynamics
- …