37 research outputs found

    Parallel Programming with Global Asynchronous Memory: Models, C++ APIs and Implementations

    Get PDF
    In the realm of High Performance Computing (HPC), message passing has been the programming paradigm of choice for over twenty years. The durable MPI (Message Passing Interface) standard, with send/receive communication, broadcast, gather/scatter, and reduction collectives is still used to construct parallel programs where each communication is orchestrated by the developer-based precise knowledge of data distribution and overheads; collective communications simplify the orchestration but might induce excessive synchronization. Early attempts to bring shared-memory programming model—with its programming advantages—to distributed computing, referred as the Distributed Shared Memory (DSM) model, faded away; one of the main issue was to combine performance and programmability with the memory consistency model. The recently proposed Partitioned Global Address Space (PGAS) model is a modern revamp of DSM that exposes data placement to enable optimizations based on locality, but it still addresses (simple) data- parallelism only and it relies on expensive sharing protocols. We advocate an alternative programming model for distributed computing based on a Global Asynchronous Memory (GAM), aiming to avoid coherency and consistency problems rather than solving them. We materialize GAM by designing and implementing a distributed smart pointers library, inspired by C++ smart pointers. In this model, public and pri- vate pointers (resembling C++ shared and unique pointers, respectively) are moved around instead of messages (i.e., data), thus alleviating the user from the burden of minimizing transfers. On top of smart pointers, we propose a high-level C++ template library for writing applications in terms of dataflow-like networks, namely GAM nets, consisting of stateful processors exchanging pointers in fully asynchronous fashion. We demonstrate the validity of the proposed approach, from the expressiveness perspective, by showing how GAM nets can be exploited to implement both standalone applications and higher-level parallel program- ming models, such as data and task parallelism. As for the performance perspective, preliminary experiments show both close-to-ideal scalability and negligible overhead with respect to state-of-the-art benchmark implementations. For instance, the GAM implementation of a high-quality video restoration filter sustains a 100 fps throughput over 70%-noisy high-quality video streams on a 4-node cluster of Graphics Processing Units (GPUs), with minimal programming effort

    Scaling Dense Linear Algebra on Multicore and Beyond: a Survey

    Get PDF

    PiCo: a Novel Approach to Stream Data Analytics

    Get PDF
    In this paper, we present a new C++ API with a fluent interface called PiCo (Pipeline Composition). PiCo’s programming model aims at making easier the programming of data analytics applications while preserving or enhancing their performance. This is attained through three key design choices: 1) unifying batch and stream data access models, 2) decoupling processing from data layout, and 3) exploiting a stream-oriented, scalable, efficient C++11 runtime system. PiCo proposes a programming model based on pipelines and operators that are polymorphic with respect to data types in the sense that it is possible to re-use the same algorithms and pipelines on different data models (e.g., streams, lists, sets, etc.). Preliminary results show that PiCo can attain better performances in terms of execution times and hugely improve memory utilization when compared to Spark and Flink in both batch and stream processing.Author's copy (postprint) of C. Misale, M. Drocco, G. Tremblay, and M. Aldinucci, "PiCo: a Novel Approach to Stream Data Analytics," in Proc. of Euro-Par Workshops: 1st Intl. Workshop on Autonomic Solutions for Parallel and Distributed Data Stream Processing (Auto-DaSP 2017), Santiago de Compostela, Spain, 2018. doi:10.1007/978-3-319-75178-8_1

    Stochastic Calculus of Wrapped Compartments

    Get PDF
    The Calculus of Wrapped Compartments (CWC) is a variant of the Calculus of Looping Sequences (CLS). While keeping the same expressiveness, CWC strongly simplifies the development of automatic tools for the analysis of biological systems. The main simplification consists in the removal of the sequencing operator, thus lightening the formal treatment of the patterns to be matched in a term (whose complexity in CLS is strongly affected by the variables matching in the sequences). We define a stochastic semantics for this new calculus. As an application we model the interaction between macrophages and apoptotic neutrophils and a mechanism of gene regulation in E.Coli

    Deep Learning at Scale

    Get PDF
    corecore