5,424 research outputs found
The construction of saturated 2Rk-p designs
Combinatorial and sequential analyses for optimization of saturated design
The Case for UHP Conditions in the Cuaba Terrane, RÃo San Juan Metamorphic Complex, Dominican Republic
From the Cuaba terrane in northern Dominican Republic. Ultrahigh pressure (UHP) conditions are indicated for the Cuaba terrane on the basis of phase relationships in garnet-bearing ultramafic rock. Dikes and orthocumulate textures indicate a magmatic origin. Mineral assemblages define a line of descent controlled by fractional crystallization. The original estimate of the magmatic conditions (P>3.4GPa, T>1550°C) was inferred previously from available high-P melting experiments in the CMAS system and high-P experimental determination of the sapphirine-out reaction in the MAS system. Revised estimates of magmatic conditions (P>3.2GPa, T>1500°C) take into account the influence of other components, especially Fe. We propose an origin in the mantle-wedge above a subduction zone. The rock was delivered to the subduction zone by forced convection in the mantle wedge (corner-flow), coupled with erosion of the hanging wall. Thermobarometry indicates >850°C and >3.4GPa when the ultramafic rock was incorporated into eclogite (deep-subducted oceanic crust). Evidence for UHP conditions in the retrograded eclogite is not obvious. Two types of symplectic intergrowths, plagioclase + clinopyroxene (Sym-I) and plagioclase + epidote (Sym-II), are interpreted as the products of the decomposition of two types of omphacite, Omp-I and Omp-II. Theoretically, Omp-II formed as the result of a retrograde reaction of the form, Omp-II + coesite = Omp-I + kyanite + /- garnet, according to which the maximum pressure for Omp-II is between ~2.8GPa (~850°C) and ~4.2GPa (~950°C), consistent with subsolidus conditions for the garnet-bearing ultramafic rocks. For eclogite, the highest-pressure mineral assemblage would have been Omp-I + kyanite + garnet + coesite
Neutron skin of 208Pb, nuclear symmetry energy, and the parity radius experiment
A precise determination of the neutron skin thickness of a heavy nucleus sets
a basic constraint on the nuclear symmetry energy (the neutron skin thickness
is the difference of the neutron and proton rms radii of the nucleus). The
parity radius experiment (PREX) may achieve it by electroweak parity-violating
electron scattering (PVES) on 208Pb. We investigate PVES in nuclear mean field
approach to allow the accurate extraction of the neutron skin thickness of
208Pb from the parity-violating asymmetry probed in the experiment. We
demonstrate a high linear correlation between the parity-violating asymmetry
and the neutron skin thickness in successful mean field forces as the best
means to constrain the neutron skin of 208Pb from PREX, without assumptions on
the neutron density shape. Continuation of the experiment with higher precision
in the parity-violating asymmetry is motivated since the present method can
support it to constrain the density slope of the nuclear symmetry energy to new
accuracy.Comment: 4 pages, 3 figures, some changes in text and references, version to
appear in Phys. Rev. Let
ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis
peer-reviewedCrAssphages are an extensive and ubiquitous family of tailed bacteriophages, predicted to infect bacteria of the order Bacteroidales. Despite being found in ~50% of individuals and representing up to 90% of human gut viromes, members of this viral family have never been isolated in culture and remain understudied. Here, we report the isolation of a CrAssphage (ΦCrAss001) from human faecal material. This bacteriophage infects the human gut symbiont Bacteroides intestinalis, confirming previous in silico predictions of the likely host. DNA sequencing demonstrates that the bacteriophage genome is circular, 102 kb in size, and has unusual structural traits. In addition, electron microscopy confirms that ΦcrAss001 has a podovirus-like morphology. Despite the absence of obvious lysogeny genes, ΦcrAss001 replicates in a way that does not disrupt proliferation of the host bacterium, and is able to maintain itself in continuous host culture during several weeks
A feasibility study of signed consent for the collection of patient identifiable information for a national paediatric clinical audit database
Objectives: To investigate the feasibility of obtaining signed consent
for submission of patient identifiable data to a national clinical
audit database and to identify factors influencing the consent process
and its success.
Design: Feasibility study.
Setting: Seven paediatric intensive care units in England.
Participants: Parents/guardians of patients, or patients aged 12-16
years old, approached consecutively over three months for signed
consent for submission of patient identifiable data to the national
clinical audit database the Paediatric Intensive Care Audit Network
(PICANet).
Main outcome measures: The numbers and proportions of admissions for
which signed consent was given, refused, or not obtained (form not
returned or form partially completed but not signed), by age, sex,
level of deprivation, ethnicity (South Asian or not), paediatric index
of mortality score, length of hospital stay (days in paediatric
intensive care).
Results: One unit did not start and one did not fully implement the
protocol, so analysis excluded these two units. Consent was obtained
for 182 of 422 admissions (43%) (range by unit 9% to 84%). Most
(101/182; 55%) consents were taken by staff nurses. One refusal (0.2%)
was received. Consent rates were significantly better for children who
were more severely ill on admission and for hospital stays of six days
or more, and significantly poorer for children aged 10-14 years. Long
hospital stays and children aged 10-14 years remained significant in a
stepwise regression model of the factors that were significant in the
univariate model.
Conclusion: Systematically obtaining individual signed consent for
sharing patient identifiable information with an externally located
clinical audit database is difficult. Obtaining such consent is
unlikely to be successful unless additional resources are specifically
allocated to training, staff time, and administrative support
Using Rheo-Small-Angle Neutron Scattering to Understand How Functionalised Dipeptides Form Gels
We explore the use of rheo-small-angle neutron scattering as a method to collect structural information from neutron scattering simultaneously with rheology to understand how low-molecular-weight hydrogels form and behave under shear. We examine three different gelling hydrogel systems to assess what structures are formed and how these influence the rheology. Furthermore, we probe what is happening to the network during syneresis and why the gels do not recover after an applied strain. All this information is vital when considering gels for applications such as 3D-printing and injection
Decuplet Baryon Structure from Lattice QCD
The electromagnetic properties of the SU(3)-flavor baryon decuplet are
examined within a lattice simulation of quenched QCD. Electric charge radii,
magnetic moments, and magnetic radii are extracted from the E0 and M1 form
factors. Preliminary results for the E2 and M3 moments are presented giving the
first model independent insight to the shape of the quark distribution in the
baryon ground state. As in our octet baryon analysis, the lattice results give
evidence of spin-dependent forces and mass effects in the electromagnetic
properties. The quark charge distribution radii indicate these effects act in
opposing directions. Some baryon dependence of the effective quark magnetic
moments is seen. However, this dependence in decuplet baryons is more subtle
than that for octet baryons. Of particular interest are the lattice predictions
for the magnetic moments of and for which new recent
experimental measurements are available. The lattice prediction of the
ratio appears larger than the experimental ratio, while the
lattice prediction for the magnetic moment ratio is in good
agreement with the experimental ratio.Comment: RevTeX manuscript, 34 pages plus 21 figures (available upon request
Tests of relativity using a microwave resonator
The frequencies of a cryogenic sapphire oscillator and a hydrogen maser are
compared to set new constraints on a possible violation of Lorentz invariance.
We determine the variation of the oscillator frequency as a function of its
orientation (Michelson-Morley test) and of its velocity (Kennedy-Thorndike
test) with respect to a preferred frame candidate. We constrain the
corresponding parameters of the Mansouri and Sexl test theory to and which is equivalent to the best previous result for the
former and represents a 30 fold improvement for the latter.Comment: 8 pages, 2 figures, submitted to Physical Review Letters (October 3,
2002
Baryon Octet to Decuplet Electromagnetic Transitions
The electromagnetic transition moments of the -flavor baryon octet to
decuplet are examined within a lattice simulation of quenched QCD. The magnetic
transition moment for the channel is found to be in
agreement with recent experimental analyses. The lattice results indicate
. In terms of the Particle Data Group
convention, GeV for
transitions. Lattice predictions for the hyperon transition moments agree
with those of a simple quark model. However the manner in which the quarks
contribute to the transition moments in the lattice simulation is different
from that anticipated by quark model calculations. The scalar quadrupole form
factor exhibits a behavior consistent with previous multipole analyses. The
multipole transition moment ratios are also determined. The lattice
results suggest \% for
transitions. Of particular interest are significant
nonvanishing signals for the ratio in and
electromagnetic transitions.Comment: PostScript file, 37 pages including figures. U. MD PP #93-085, U. KY
PP #UK/92-09, TRIUMF PP #TRI-PP-92-12
Game On? Smoking Cessation Through the Gamification of mHealth: A Longitudinal Qualitative Study
BACKGROUND: Finding ways to increase and sustain engagement with mHealth interventions has become a challenge during application development. While gamification shows promise and has proven effective in many fields, critical questions remain concerning how to use gamification to modify health behavior. OBJECTIVE: The objective of this study is to investigate how the gamification of mHealth interventions leads to a change in health behavior, specifically with respect to smoking cessation. METHODS: We conducted a qualitative longitudinal study using a sample of 16 smokers divided into 2 cohorts (one used a gamified intervention and the other used a nongamified intervention). Each participant underwent 4 semistructured interviews over a period of 5 weeks. Semistructured interviews were also conducted with 4 experts in gamification, mHealth, and smoking cessation. Interviews were transcribed verbatim and thematic analysis undertaken. RESULTS: Results indicated perceived behavioral control and intrinsic motivation acted as positive drivers to game engagement and consequently positive health behavior. Importantly, external social influences exerted a negative effect. We identified 3 critical factors, whose presence was necessary for game engagement: purpose (explicit purpose known by the user), user alignment (congruency of game and user objectives), and functional utility (a well-designed game). We summarize these findings in a framework to guide the future development of gamified mHealth interventions. CONCLUSIONS: Gamification holds the potential for a low-cost, highly effective mHealth solution that may replace or supplement the behavioral support component found in current smoking cessation programs. The framework reported here has been built on evidence specific to smoking cessation, however it can be adapted to health interventions in other disease categories. Future research is required to evaluate the generalizability and effectiveness of the framework, directly against current behavioral support therapy interventions in smoking cessation and beyond
- …