442 research outputs found

    Group-Based Participatory Arts Interventions Validate Personhood for those Living with Dementia

    Get PDF
    Participatory arts-based interventions for people living with dementia involve the collaborative creation and performance of poetry, story, song, dance, and visual arts. These programs are designed to support self-expression and productive collaboration among people living with dementia while stimulating positive social interactions and feelings of empowerment and validation. In this commentary, we explore the use and potential benefits of validation in the implementation of person-centered participatory arts interventions in the context of dementia care. We offer a novel framework for understanding validation as a common intervention method during these activities, organized into five themes: collaboration, connection, communication, creation, and confirmation. These validation opportunities are suggested to offer direct benefits for participants as well as indirect benefits when modeled in the presence of formal care providers and family members. Clinicians and other transdisciplinary care providers are encouraged to understand, use, and teach these and other validation-focused arts interventions with persons living with dementia

    Nested deletion analysis of Wheat streak mosaic virus HC-Pro: Mapping of domains affecting polyprotein processing and eriophyid mite transmission

    Get PDF
    A series of in-frame and nested deletion mutations which progressively removed 5′-proximal sequences of the Wheat streak mosaic virus (WSMV) HC-Pro coding region (1152 nucleotides) was constructed and evaluated for pathogenicity to wheat. WSMV HC-Pro mutants with 5′- proximal deletions of 12 to 720 nucleotides systemically infected wheat. Boundary sequences flanking the deletions were stable and unaltered by passage through plants for all deletion mutants except HCD12 (lacking HC-Pro codons 3–6) that exhibited strong bias for G to A substitution at nucleotide 1190 in HC-Pro codon 2 (aspartic acid to asparagine). HC-Pro mutants with 5′-proximal deletions of up to 720 nucleotides retained autoproteolytic activity in vitro. In contrast, 5′-proximal deletion of 852 nucleotides of the HC-Pro coding region (HCD852) abolished both infectivity and in vitro proteolytic activity, confirming that the proteolytic domain of WSMV HC-Pro resides within the carboxy-terminal third of the protein and includes the cysteine proteinase motif (GYCY) conserved among four genera of the family Potyviridae. Inoculation of wheat with HC-Pro deletion mutants also bearing the GUS reporter gene revealed that HCD852 was unable to establish primary infection foci in inoculated leaves, indicating that processing of the P3 amino-terminus was essential. Deletion of as few as 24 nucleotides of HC-Pro (codons 3–10) eliminated transmission by the eriophyid mite vector Aceria tosichella Keifer. Collectively, these results demonstrated similar organization of proteinase and vector transmission functional domains among divergent HC-Pro homologues encoded by potyviruses and tritimoviruses. Published by Elsevier Inc

    Nested deletion analysis of Wheat streak mosaic virus HC-Pro: Mapping of domains affecting polyprotein processing and eriophyid mite transmission

    Get PDF
    A series of in-frame and nested deletion mutations which progressively removed 5′-proximal sequences of the Wheat streak mosaic virus (WSMV) HC-Pro coding region (1152 nucleotides) was constructed and evaluated for pathogenicity to wheat. WSMV HC-Pro mutants with 5′- proximal deletions of 12 to 720 nucleotides systemically infected wheat. Boundary sequences flanking the deletions were stable and unaltered by passage through plants for all deletion mutants except HCD12 (lacking HC-Pro codons 3–6) that exhibited strong bias for G to A substitution at nucleotide 1190 in HC-Pro codon 2 (aspartic acid to asparagine). HC-Pro mutants with 5′-proximal deletions of up to 720 nucleotides retained autoproteolytic activity in vitro. In contrast, 5′-proximal deletion of 852 nucleotides of the HC-Pro coding region (HCD852) abolished both infectivity and in vitro proteolytic activity, confirming that the proteolytic domain of WSMV HC-Pro resides within the carboxy-terminal third of the protein and includes the cysteine proteinase motif (GYCY) conserved among four genera of the family Potyviridae. Inoculation of wheat with HC-Pro deletion mutants also bearing the GUS reporter gene revealed that HCD852 was unable to establish primary infection foci in inoculated leaves, indicating that processing of the P3 amino-terminus was essential. Deletion of as few as 24 nucleotides of HC-Pro (codons 3–10) eliminated transmission by the eriophyid mite vector Aceria tosichella Keifer. Collectively, these results demonstrated similar organization of proteinase and vector transmission functional domains among divergent HC-Pro homologues encoded by potyviruses and tritimoviruses. Published by Elsevier Inc

    Simulation of fluid flows during growth of organic crystals in microgravity

    Get PDF
    Several counter diffusion type crystal growth experiments were conducted in space. Improvements in crystal size and quality are attributed to reduced natural convection in the microgravity environment. One series of experiments called DMOS (Diffusive Mixing of Organic Solutions) was designed and conducted by researchers at the 3M Corporation and flown by NASA on the space shuttle. Since only limited information about the mixing process is available from the space experiments, a series of ground based experiments was conducted to further investigate the fluid dynamics within the DMOS crystal growth cell. Solutions with density differences in the range of 10 to the -7 to 10 to the -4 power g/cc were used to simulate microgravity conditions. The small density differences were obtained by mixing D2O and H2O. Methylene blue dye was used to enhance flow visualization. The extent of mixing was measured photometrically using the 662 nm absorbance peak of the dye. Results indicate that extensive mixing by natural convection can occur even under microgravity conditions. This is qualitatively consistent with results of a simple scaling analysis. Quantitave results are in close agreement with ongoing computational modeling analysis

    A Kinetic Alfven wave cascade subject to collisionless damping cannot reach electron scales in the solar wind at 1 AU

    Full text link
    (Abridged) Turbulence in the solar wind is believed to generate an energy cascade that is supported primarily by Alfv\'en waves or Alfv\'enic fluctuations at MHD scales and by kinetic Alfv\'en waves (KAWs) at kinetic scales kρi1k_\perp \rho_i\gtrsim 1. Linear Landau damping of KAWs increases with increasing wavenumber and at some point the damping becomes so strong that the energy cascade is completely dissipated. A model of the energy cascade process that includes the effects of linear collisionless damping of KAWs and the associated compounding of this damping throughout the cascade process is used to determine the wavenumber where the energy cascade terminates. It is found that this wavenumber occurs approximately when γ/ω0.25|\gamma/\omega|\simeq 0.25, where ω(k)\omega(k) and γ(k)\gamma(k) are, respectively, the real frequency and damping rate of KAWs and the ratio γ/ω\gamma/\omega is evaluated in the limit as the propagation angle approaches 90 degrees relative to the direction of the mean magnetic field.Comment: Submitted to Ap

    New Discoveries in Planetary Systems and Star Formation through Advances in Laboratory Astrophysics

    Get PDF
    As the panel on Planetary Systems and Star Formation (PSF) is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of solar system bodies (other than the Sun) and extrasolar planets, debris disks, exobiology, the formation of individual stars, protostellar and protoplanetary disks, molecular clouds and the cold ISM, dust, and astrochemistry. Central to the progress in these areas are the corresponding advances in laboratory astro- physics which are required for fully realizing the PSF scientific opportunities in the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics and chemistry which produce the observed spectra and describe the astrophysical processes. We discuss four areas of laboratory astrophysics relevant to the PSF panel: atomic, molecular, solid matter, and plasma physics. Section 2 describes some of the new opportunities and compelling themes which will be enabled by advances in laboratory astrophysics. Section 3 provides the scientific context for these opportunities. Section 4 discusses some experimental and theoretical advances in laboratory astrophysics required to realize the PSF scientific opportunities of the next decade. As requested in the Call for White Papers, we present in Section 5 four central questions and one area with unusual discovery potential. We give a short postlude in Section 6.Comment: White paper submitted by the AAS Working Group on Laboratory Astrophysics (WGLA) to the PSF SFP of the Astronomy and Astrophysics Decadal Survey (Astro2010

    Laboratory Astrophysics and the State of Astronomy and Astrophysics

    Get PDF
    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments in experimental technologies have allowed laboratory studies to take on a new role as some questions which previously could only be studied theoretically can now be addressed directly in the lab. With this in mind we, the members of the AAS Working Group on Laboratory Astrophysics, have prepared this State of the Profession Position Paper on the laboratory astrophysics infrastructure needed to ensure the advancement of astronomy and astrophysics in the next decade.Comment: Position paper submitted by the AAS Working Group on Laboratory Astrophysics (WGLA) to the State of the Profession (Facilities, Funding and Programs Study Group) of the Astronomy and Astrophysics Decadal Survey (Astro2010

    Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    Full text link
    The Tile Calorimeter at ATLAS is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links, will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new read-out system will be installed in one slice of the ATLAS Tile Calorimeter. This will allow the proposed upgrade to be thoroughly evaluated well before the planned 2023 deployment in all slices, especially with regard to long term reliability. Different firmware strategies alongside with their integration in the demonstrator are presented in the context of high reliability protection against hardware malfunction and radiation induced errors
    corecore