82 research outputs found

    Entropy and Poincar\'e recurrence from a geometrical viewpoint

    Full text link
    We study Poincar\'e recurrence from a purely geometrical viewpoint. We prove that the metric entropy is given by the exponential growth rate of return times to dynamical balls. This is the geometrical counterpart of Ornstein-Weiss theorem. Moreover, we show that minimal return times to dynamical balls grow linearly with respect to its length. Finally, some interesting relations between recurrence, dimension, entropy and Lyapunov exponents of ergodic measures are given.Comment: 11 pages, revised versio

    Equilibrium states for potentials with \sup\phi - \inf\phi < \htop(f)

    Full text link
    In the context of smooth interval maps, we study an inducing scheme approach to prove existence and uniqueness of equilibrium states for potentials Ï•\phi with he `bounded range' condition \sup \phi - \inf \phi < \htop, first used by Hofbauer and Keller. We compare our results to Hofbauer and Keller's use of Perron-Frobenius operators. We demonstrate that this `bounded range' condition on the potential is important even if the potential is H\"older continuous. We also prove analyticity of the pressure in this context.Comment: Added Lemma 6 to deal with the disparity between leading eigenvalues and operator norms. Added extra references and corrected some typo

    Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies

    Full text link
    Delone sets of finite local complexity in Euclidean space are investigated. We show that such a set has patch counting and topological entropy 0 if it has uniform cluster frequencies and is pure point diffractive. We also note that the patch counting entropy is 0 whenever the repetitivity function satisfies a certain growth restriction.Comment: 16 pages; revised and slightly expanded versio

    On stochastic sea of the standard map

    Full text link
    Consider a generic one-parameter unfolding of a homoclinic tangency of an area preserving surface diffeomorphism. We show that for many parameters (residual subset in an open set approaching the critical value) the corresponding diffeomorphism has a transitive invariant set Ω\Omega of full Hausdorff dimension. The set Ω\Omega is a topological limit of hyperbolic sets and is accumulated by elliptic islands. As an application we prove that stochastic sea of the standard map has full Hausdorff dimension for sufficiently large topologically generic parameters.Comment: 36 pages, 5 figure

    Survey of odometers and Toeplitz flows

    No full text

    Reading along arithmetic progressions

    No full text
    Given a 0-1 sequence x in which both letters occur with density 1/2, do there exist arbitrarily long arithmetic progressions along which x reads 010101...? We answer the above negatively by showing that a certain regular triadic Toeplitz sequence does not have this property. On the other hand, we prove that if x is a generalized binary Morse sequence then each block can be read in x along some arithmetic progression

    Anzelm Iwanik (1946-1998)

    No full text
    • …
    corecore