3,712 research outputs found
Global Talentship: Toward a Decision Science Connecting Talent to Global Strategic Success
It is widely accepted that global competitive advantage frequently requires managing such complex situations that traditional organization and job structures are simply insufficient. Increasingly, in order to create a flexible and integrated set of decisions that balance local flexibility with global efficiency, organizations must rely on more social, informal and matrix-based shared visions among managers and employees. Research on global strategic advantage, global organizational structures, and even shared mindsets has suggested that dimensions of culture, product and function provide a valuable organizing framework. However, typical decisions about organization structure, HRM practices and talent often remain framed at such a high level as to preclude their solution. We maintain that there is often no logical answer to such questions as, “Should the sales force be local or global?” or “Should product authority rest with the countries or the corporate center?” However, we propose that embedding business processes or value chains within a Culture and Product matrix provides the necessary analytic detail to reveal otherwise elusive solutions. Moreover, by linking this global process matrix to a model that bridges strategy and talent, it is possible to identify global “pivotal talent pools,” and to target organizational and human resource investments toward those talent areas that have the greatest impact on strategic advantage. We demonstrate the Value-Chain, Culture and Product (VCCP) matrix using several examples, and discuss future research and practical implications, particularly for leadership and leadership development
Quantum Technology: The Second Quantum Revolution
We are currently in the midst of a second quantum revolution. The first
quantum revolution gave us new rules that govern physical reality. The second
quantum revolution will take these rules and use them to develop new
technologies. In this review we discuss the principles upon which quantum
technology is based and the tools required to develop it. We discuss a number
of examples of research programs that could deliver quantum technologies in
coming decades including; quantum information technology, quantum
electromechanical systems, coherent quantum electronics, quantum optics and
coherent matter technology.Comment: 24 pages and 6 figure
Introgressive Hybridization and the Evolution of Lake-Adapted Catostomid Fishes.
Hybridization has been identified as a significant factor in the evolution of plants as groups of interbreeding species retain their phenotypic integrity despite gene exchange among forms. Recent studies have identified similar interactions in animals; however, the role of hybridization in the evolution of animals has been contested. Here we examine patterns of gene flow among four species of catostomid fishes from the Klamath and Rogue rivers using molecular and morphological traits. Catostomus rimiculus from the Rogue and Klamath basins represent a monophyletic group for nuclear and morphological traits; however, the Klamath form shares mtDNA lineages with other Klamath Basin species (C. snyderi, Chasmistes brevirostris, Deltistes luxatus). Within other Klamath Basin taxa, D. luxatus was largely fixed for alternate nuclear alleles relative to C. rimiculus, while Ch. brevirostris and C. snyderi exhibited a mixture of these alleles. Deltistes luxatus was the only Klamath Basin species that exhibited consistent covariation of nuclear and mitochondrial traits and was the primary source of mismatched mtDNA in Ch. brevirostris and C. snyderi, suggesting asymmetrical introgression into the latter species. In Upper Klamath Lake, D. luxatus spawning was more likely to overlap spatially and temporally with C. snyderi and Ch. brevirostris than either of those two with each other. The latter two species could not be distinguished with any molecular markers but were morphologically diagnosable in Upper Klamath Lake, where they were largely spatially and temporally segregated during spawning. We examine parallel evolution and syngameon hypotheses and conclude that observed patterns are most easily explained by introgressive hybridization among Klamath Basin catostomids
Cold Atom Physics Using Ultra-Thin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions
The strong evanescent field around ultra-thin unclad optical fibers bears a
high potential for detecting, trapping, and manipulating cold atoms.
Introducing such a fiber into a cold atom cloud, we investigate the interaction
of a small number of cold Caesium atoms with the guided fiber mode and with the
fiber surface. Using high resolution spectroscopy, we observe and analyze
light-induced dipole forces, van der Waals interaction, and a significant
enhancement of the spontaneous emission rate of the atoms. The latter can be
assigned to the modification of the vacuum modes by the fiber.Comment: 4 pages, 4 figure
On the Squeezed Number States and their Phase Space Representations
We compute the photon number distribution, the Q distribution function and
the wave functions in the momentum and position representation for a single
mode squeezed number state using generating functions which allow to obtain any
matrix element in the squeezed number state representation from the matrix
elements in the squeezed coherent state representation. For highly squeezed
number states we discuss the previously unnoted oscillations which appear in
the Q function. We also note that these oscillations can be related to the
photon-number distribution oscillations and to the momentum representation of
the wave function.Comment: 16 pages, 9 figure
Entanglement of indistinguishable particles in condensed matter physics
The concept of entanglement in systems where the particles are
indistinguishable has been the subject of much recent interest and controversy.
In this paper we study the notion of entanglement of particles introduced by
Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific
physical systems, including some that occur in condensed matter physics. The
entanglement of particles is relevant when the identical particles are
itinerant and so not distinguished by their position as in spin models. We show
that entanglement of particles can behave differently to other approaches that
have been used previously, such as entanglement of modes (occupation-number
entanglement) and the entanglement in the two-spin reduced density matrix. We
argue that the entanglement of particles is what could actually be measured in
most experimental scenarios and thus its physical significance is clear. This
suggests entanglement of particles may be useful in connecting theoretical and
experimental studies of entanglement in condensed matter systems.Comment: 13 pages, 6 figures, comments welcome, published version (minor
changes, added references
Quantum reflection of atoms from a solid surface at normal incidence
We observed quantum reflection of ultracold atoms from the attractive
potential of a solid surface. Extremely dilute Bose-Einstein condensates of
^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak
gravito-magnetic trap were normally incident on a silicon surface. Reflection
probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s.
The velocity dependence agrees qualitatively with the prediction for quantum
reflection from the attractive Casimir-Polder potential. Atoms confined in a
harmonic trap divided in half by a solid surface exhibited extended lifetime
due to quantum reflection from the surface, implying a reflection probability
above 50 %.Comment: To appear in Phys. Rev. Lett. (December 2004)5 pages, 4 figure
Husimi's function and quantum interference in phase space
We discuss a phase space description of the photon number distribution of non
classical states which is based on Husimi's function and does not
rely in the WKB approximation. We illustrate this approach using the examples
of displaced number states and two photon coherent states and show it to
provide an efficient method for computing and interpreting the photon number
distribution . This result is interesting in particular for the two photon
coherent states which, for high squeezing, have the probabilities of even and
odd photon numbers oscillating independently.Comment: 15 pages, 12 figures, typos correcte
Cumulative Effect of the Application of N and P Fertilizers on Soil Total and Labile Concentrations After 12 Cereal Crops on a Black Vertosol
Soil organic carbon is commonly used as a key indicator of sustainability of farming systems due to effects on nutrient availability, structural stability and its central role in soil biotic processes. Trends in total carbon content (CT) and lability of carbon (CL) in soil have been measured in a long-term nitrogen (N) x phosphorus (P) fertiliser experiment in continuous cereal cropping to assess the effect of increasing crop nutrient supply on soil carbon accretion and partitioning. Increasing N supply in each crop by 80 kg/ha or more was effective in creating significantly different total and labile carbon content
- …