3 research outputs found

    Twinning induced plasticity in austenitic stainless steel 316L made by additive manufacturing

    No full text
    Additively manufactured (AM) 316L steel exhibits extraordinary high yield strength, and surprisingly good ductility despite the high level of porosity in the material. This detailed study sheds light on the origins of the observed high yield strength and good ductility. The extremely fine cells which are formed because of rapid cooling and dense dislocations are responsible for the macroscopically high yield strength of the AM 316L (almost double of that seen in annealed 316L steel). Most interestingly, twinning is dominant in deformed samples of the AM316. It is believed that twinning-induced plasticity (TWIP) behaviour to be responsible for the excellent ductility of the steel despite the high level of porosity. The dominant twinning activity is attributed to Nitrogen gas used in 3D printing. Nitrogen can lower the stacking fault energy of the steel, leading to the disassociation of dislocations, promoting the deformation twinning. Twinning induces large plasticity during deformation that can compensate the negative effect of porosity in AM steel. However, twinning does not induce significant hardening because (1) the porosity causes a negative effect on hardening and (2) twinning spacing is still larger than extremely fine solidification cells

    Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion

    No full text
    The CoCrFeMnNi high-entropy alloy is a promising candidate for metal additive manufacturing. In this study, single-layer and multi-layer builds were produced by laser powder bed fusion to study microstructure formation in rapid cooling and its evolution during repeated metal deposition. CoCrFeMnNi showed good printability with high consolidation and uniform high hardness. It is shown that microstructure in the printed alloy is governed by epitaxial growth and competitive grain growth. As a consequence, a bi-directional scanning pattern without rotation in subsequent layers generates a dominant alternating sequence of two crystal orientations

    The role of side-branching in microstructure development in laser powder-bed fusion

    Get PDF
    In-depth understanding of microstructure development is required to fabricate high quality products by additive manufacturing (i.e. 3D printing). Here we report the governing role of side-branching in the microstructure development of alloys by laser powder bed fusion. We show that perturbations on the sides of cells (or dendrites) facilitate crystals to change growth direction by side-branching along orthogonal directions in response to changes in local heat flux. While the continuous epitaxial growth is responsible for slender columnar grains confined to the centreline of melt pools, side-branching frequently happening on the sides of melt pools enables crystals to follow drastic changes in thermal gradient across adjacent melt pools, resulting in substantial broadening of grains. The variation of scan pattern can interrupt the vertical columnar microstructure, but promotes both in-layer and out-of-layer side-branching, in particular resulting in the helical growth of microstructure in a chessboard strategy with 67 rotation between layers