22 research outputs found
A5: Grafton Notch State Park: Glacial Gorges and Streams Under Pressure in the Mahoosic Range, Maine
Guidebook for field trips in Western Maine and Northern New Hampshire: New England Intercollegiate Geological Conference, p. 95-104
Recommended from our members
Interannual climate variability helps define the mean state of glaciers
Changes in glacier length and extent are indicators of contemporary and archives of past climate changes, but this common climate proxy presents a challenge for inferring a climate signal. Modeling studies suggest that length fluctuations can occur due to interannual climate variability within an unchanging mean climate and that changes in interannual climate variability can also drive changes in average length. This paper quantifies the impacts of interannual climate variability on average glacier length and mass balance, using a flowline model coupled to a simplified mass-balance model. Results illustrate that changes in the magnitude of interannual temperature variability can non-linearly affect the mean glacier length through a mass-balance asymmetry between warm and cold years. This asymmetry is present in models where melt only initiates after a temperature threshold is crossed. Glaciers susceptible to this asymmetry can be identified based on the shape of their mass-balance profiles. The presence of mass-balance asymmetries in glaciological databases is evaluated, but current records are too short for high statistical resolving power. While the asymmetry in this study can affect the average length and mass-balance, its impacts are small, and paleoclimate interpretations from glacier-length changes are likely not notably influenced by this process
The Last Glacial Maximum in Central North Island, New Zealand: Palaeoclimate Inferences from Glacier Modelling
Quantitative palaeoclimate reconstructions provide data for evaluating the mechanisms of past, natural climate variability. Geometries of former mountain glaciers constrained by moraine mapping afford the opportunity to reconstruct palaeoclimate, due to the close relationship between ice extent and local climate. In this study, we present results from a series of experiments using a 2D coupled energy-balance/ice-flow model that investigate the palaeoclimate significance of Last Glacial Maximum m
oraines within nine catchments in the central North Island, New Zealand. We find that the former ice limits can be simulated when present-day temperatures are reduced by between 4 and 7 â—¦C, if precipitation remains unchanged from present. The spread in the results between the nine catchments is likely to rep- resent the combination of chronological and model uncer- tainties. The majority of catchments targeted require tem- perature decreases of 5.1 to 6.3 â—¦ C to simulate the former glaciers, which represents our best estimate of the tempera- ture anomaly in the central North Island, New Zealand, dur- ing the Last Glacial Maximum. A decrease in precipitation of up to 25 % from present, as suggested by proxy evidence and climate models, increases the magnitude of the required temperature changes by up to 0.8 â—¦ C. Glacier model experi- ments using reconstructed topographies that exclude the vol- ume of post-glacial (\u3c 15 ka) volcanism generally increased the magnitude of cooling required to simulate the former ice
limits by up to 0.5 â—¦ C. Our palaeotemperature estimates ex- pand the spatial coverage of proxy-based quantitative palaeo- climate reconstructions in New Zealand. Our results are also consistent with independent, proximal temperature recon- structions from fossil groundwater and pollen assemblages, as well as similar glacier modelling reconstructions from the central Southern Alps, which suggest air temperatures were ca. 6 â—¦ C lower than present across New Zealand during the Last Glacial Maximum
Recommended from our members
Evaluation of Lateglacial temperatures in the Southern Alps of New Zealand based on glacier modelling at Irishman Stream, Ben Ohau Range
Climate proxy records from the middle to high latitude Southern Hemisphere indicate that a Lateglacial (15,000-11,500 years ago) climate reversal, approximately coeval with the Antarctic Cold Reversal (ACR), interrupted a warming trend during deglaciation. In New Zealand, some palaeoclimate proxy records indicate a cool episode during the ACR (ca 14,500-12,500 years ago), while others do not express a significant change in climate. Recently published moraine maps and ages present an opportunity to improve the palaeoclimate interpretation through numerical modelling of glaciers. We use a coupled energy-balance and ice-flow model to quantify palaeoclimate from past glacier extent constrained by mapped and dated moraines in the headwaters of Irishman Stream, a high-elevation catchment in the Southern Alps. First, a suite of steady-state model runs is used to identify the temperature and precipitation forcing required to fit the modelled glacier to well-dated Lateglacial moraine crests. Second, time dependent glacier simulations forced by a nearby proxy temperature record derived from chironomids are used to assess the fit with the glacial geomorphic record. Steady-state experiments using an optimal parameter set demonstrate that the conditions under which the 13,000 year old moraine formed were 2.3-3.2 *C colder than present with the range in temperature corresponding to a +/- 20% variance in precipitation relative to the present-day. This reconstructed climate change relative to the present-day corresponds to an equilibrium-line altitude of ca 2000 +/- 40 m above sea level (asl), which is ca 400 m lower than present. Time-dependent simulations of glacier length produce ice advance to within 100 m of the 13,000 year old terminal moraine, indicating that the chironomid-based temperature forcing and moraine record provide consistent information about past climate. Our results, together with other climate proxy reconstructions from pollen records and marine sediment cores, support the notion that temperatures during the ACR in New Zealand were ~2-3 *C cooler than today
The Last Glacial Maximum in the central North Island, New Zealand: palaeoclimate inferences from glacier modelling
Abstract. Quantitative palaeoclimate reconstructions provide data for evaluating the mechanisms of past, natural climate variability. Geometries of former mountain glaciers constrained by moraine mapping afford the opportunity to reconstruct palaeoclimate, due to the close relationship between ice extent and local climate. In this study, we present results from a series of experiments using a 2D coupled energy-balance/ice-flow model that investigate the palaeoclimate significance of Last Glacial Maximum moraines within nine catchments in central North Island, New Zealand. We find that the former ice limits can be simulated when present day temperatures are reduced by between 4 °C and 7 °C, when precipitation remains unchanged from present. The spread in the results between the nine catchments is likely to represent the combination of chronological and model uncertainties. The temperature decrease required to simulate the former glaciers falls in the range of 5.1 °C and 6.3 °C for the majority of catchments targeted, which represents our best estimate of the peak temperature anomaly in central North Island, New Zealand during the Last Glacial Maximum. A decrease in precipitation, as suggested by proxy evidence and climate models, of up to 25 % from present, increases the magnitude of the required temperature changes by up to 0.8 °C. Glacier model experiments using reconstructed topographies that exclude the volume of post-glacial (<15 ka) volcanism, generally increased the magnitude of cooling required to simulate the former ice limits by up to 0.5 °C. Our palaeotemperature estimates expand the spatial coverage of proxy-based quantitative palaeoclimate reconstructions in New Zealand, and are consistent with independent, proximal temperature reconstructions from fossil pollen assemblages, as well as similar glacier modelling reconstructions from central Southern Alps.
</jats:p
Recommended from our members
High-precision 10Be chronology of moraines in the Southern Alps indicates synchronous cooling in Antarctica and New Zealand 42,000 years ago
Millennial-scale temperature variations in Antarctica during the period 80,000 to 18,000 years ago are known to anti-correlate broadly with winter-centric cold–warm episodes revealed in Greenland ice cores. However, the extent to which climate fluctuations in the Southern Hemisphere beat in time with Antarctica, rather than with the Northern Hemisphere, has proved a controversial question. In this study we determine the ages of a prominent sequence of glacial moraines in New Zealand and use the results to assess the phasing of millennial climate change. Forty-four 10Be cosmogenic surface-exposure ages of boulders deposited by the Pukaki glacier in the Southern Alps document four moraine-building events from Marine Isotope Stage 3 (MIS 3) through to the end of the Last Glacial Maximum (∼18,000 years ago; LGM). The earliest moraine-building event is defined by the ages of nine boulders on a belt of moraine that documents the culmination of a glacier advance 42,000 years ago. At the Pukaki locality this advance was of comparable scale to subsequent advances that, from the remaining exposure ages, occurred between 28,000 and 25,000, at 21,000, and at 18,000 years ago. Collectively, all four moraine-building events represent the LGM. The glacier advance 42,000 years ago in the Southern Alps coincides in Antarctica with a cold episode, shown by the isotopic record from the EPICA Dome C ice core, between the prominent A1 and A2 warming events. Therefore, the implication of the Pukaki glacier record is that as early as 42,000 years ago an episode of glacial cold similar to that of the LGM extended in the atmosphere from high on the East Antarctic plateau to at least as far north as the Southern Alps (∼44°S). Such a cold episode is thought to reflect the translation through the atmosphere and/or the ocean of the anti-phased effects of Northern Hemisphere interstadial conditions to the southern half of the Southern Hemisphere. Regardless of the mechanism, any explanation for the cold episode at 42,000 years ago must account for its widespread atmospheric footprint not only in Antarctica but also within the westerly wind belt in southern mid-latitudes
Can Recovery-Oriented Mental Health Services be Created in Hong Kong? Struggles and Strategies
Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK ‘Alert Level 4’ phase of the B-MaP-C study
Abstract: Background: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. Methods: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated ‘standard’ or ‘COVID-altered’, in the preoperative, operative and post-operative setting. Findings: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had ‘COVID-altered’ management. ‘Bridging’ endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2–9%) using ‘NHS Predict’. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. Conclusions: The majority of ‘COVID-altered’ management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society