10 research outputs found

    Elastic Wave Eigenmode Solver for Acoustic Waveguides

    Get PDF
    A numerical solver for the elastic wave eigenmodes in acoustic waveguides of inhomogeneous cross-section is presented. Operating under the assumptions of linear, isotropic materials, it utilizes a finite-difference method on a staggered grid to solve for the acoustic eigenmodes of the vector-field elastic wave equation. Free, fixed, symmetry, and anti-symmetry boundary conditions are implemented, enabling efficient simulation of acoustic structures with geometrical symmetries and terminations. Perfectly matched layers are also implemented, allowing for the simulation of radiative (leaky) modes. The method is analogous to eigenmode solvers ubiquitously employed in electromagnetics to find waveguide modes, and enables design of acoustic waveguides as well as seamless integration with electromagnetic solvers for optomechanical device design. The accuracy of the solver is demonstrated by calculating eigenfrequencies and mode shapes for common acoustic modes in several simple geometries and comparing the results to analytical solutions where available or to numerical solvers based on more computationally expensive methods

    Integrated optical isolators using electrically driven acoustic waves

    Get PDF
    We propose and investigate the performance of integrated photonic isolators based on non-reciprocal mode conversion facilitated by unidirectional, traveling acoustic waves. A triply-guided waveguide system on-chip, comprising two optical modes and an electrically-driven acoustic mode, facilitates the non-reciprocal mode conversion and is combined with modal filters to create the isolator. The co-guided and co-traveling arrangement enables isolation with no additional optical loss, without magnetic-optic materials, and low power consumption. The approach is theoretically evaluated and simulations predict over 20 dB of isolation and 2.6 dB of insertion loss with 370 GHz optical bandwidth and a 1 cm device length. The isolator utilizes only 1 mW of electrical drive power, an improvement of 1-3 orders of magnitude over the state-of-the-art. The electronic driving and lack of magneto-optic materials suggest the potential for straightforward integration with the drive circuitry, possibly in monolithic CMOS technology, enabling a fully contained `black box' optical isolator with two optical ports and DC electrical power.Comment: 14 pages, 5 figures, 1 table. Relies on an acoustic-optical multiplexer introduced in arXiv:2007.11520, which has been separated out in this updated version of the paper for clarity. Additionally, this updated version included additional discussion of design considerations of the isolato

    Low-cost solar simulator design for multi-junction solar cells in space applications

    No full text
    Multi-junction solar cells are commonly used in space applications where they are exposed to the air mass 0 (AM0) spectrum. Solar simulators are used to emulate the AM0 spectrum for ground testing of the solar cells before the space application is launched. A low-cost solar simulator was designed using LEDs for the visible spectrum and halogen lamps for the infrared spectrum. A design procedure is provided to determine the intensity and geometry of the lights needed to meet spectral match and spatial uniformity requirements. The presented solar simulator design is adequate for testing GaInP2/GaAs/Ge triple-junction solar cells intended for use in a cube satellite application and has a significantly lower cost than commercially-available solar simulators
    corecore