71 research outputs found
Level Set Methods for Stochastic Discontinuity Detection in Nonlinear Problems
Stochastic physical problems governed by nonlinear conservation laws are
challenging due to solution discontinuities in stochastic and physical space.
In this paper, we present a level set method to track discontinuities in
stochastic space by solving a Hamilton-Jacobi equation. By introducing a speed
function that vanishes at discontinuities, the iso-zero of the level set
problem coincide with the discontinuities of the conservation law. The level
set problem is solved on a sequence of successively finer grids in stochastic
space. The method is adaptive in the sense that costly evaluations of the
conservation law of interest are only performed in the vicinity of the
discontinuities during the refinement stage. In regions of stochastic space
where the solution is smooth, a surrogate method replaces expensive evaluations
of the conservation law. The proposed method is tested in conjunction with
different sets of localized orthogonal basis functions on simplex elements, as
well as frames based on piecewise polynomials conforming to the level set
function. The performance of the proposed method is compared to existing
adaptive multi-element generalized polynomial chaos methods
- …