36 research outputs found

    Image_1_Deep Learning-Based Protein Features Predict Overall Survival and Chemotherapy Benefit in Gastric Cancer.jpeg

    No full text
    Gastric cancer (GC) is one of the most common malignant tumors with a high mortality rate worldwide and lacks effective methods for prognosis prediction. Postoperative adjuvant chemotherapy is the first-line treatment for advanced gastric cancer, but only a subgroup of patients benefits from it. Here, we used 833 formalin-fixed, paraffin-embedded resected tumor samples from patients with TNM stage II/III GC and established a proteomic subtyping workflow using 100 deep-learned features. Two proteomic subtypes (S-I and S-II) with overall survival differences were identified. S-I has a better survival rate and is sensitive to chemotherapy. Patients in the S-I who received adjuvant chemotherapy had a significant improvement in the 5-year overall survival rate compared with patients who received surgery alone (65.3% vs 52.6%; log-rank P = 0.014), but no improvement was observed in the S-II (54% vs 51%; log-rank P = 0.96). These results were verified in an independent validation set. Furthermore, we also evaluated the superiority and scalability of the deep learning-based workflow in cancer molecular subtyping, exhibiting its great utility and potential in prognosis prediction and therapeutic decision-making.</p

    Image_4_Deep Learning-Based Protein Features Predict Overall Survival and Chemotherapy Benefit in Gastric Cancer.jpeg

    No full text
    Gastric cancer (GC) is one of the most common malignant tumors with a high mortality rate worldwide and lacks effective methods for prognosis prediction. Postoperative adjuvant chemotherapy is the first-line treatment for advanced gastric cancer, but only a subgroup of patients benefits from it. Here, we used 833 formalin-fixed, paraffin-embedded resected tumor samples from patients with TNM stage II/III GC and established a proteomic subtyping workflow using 100 deep-learned features. Two proteomic subtypes (S-I and S-II) with overall survival differences were identified. S-I has a better survival rate and is sensitive to chemotherapy. Patients in the S-I who received adjuvant chemotherapy had a significant improvement in the 5-year overall survival rate compared with patients who received surgery alone (65.3% vs 52.6%; log-rank P = 0.014), but no improvement was observed in the S-II (54% vs 51%; log-rank P = 0.96). These results were verified in an independent validation set. Furthermore, we also evaluated the superiority and scalability of the deep learning-based workflow in cancer molecular subtyping, exhibiting its great utility and potential in prognosis prediction and therapeutic decision-making.</p

    Image_5_Deep Learning-Based Protein Features Predict Overall Survival and Chemotherapy Benefit in Gastric Cancer.jpeg

    No full text
    Gastric cancer (GC) is one of the most common malignant tumors with a high mortality rate worldwide and lacks effective methods for prognosis prediction. Postoperative adjuvant chemotherapy is the first-line treatment for advanced gastric cancer, but only a subgroup of patients benefits from it. Here, we used 833 formalin-fixed, paraffin-embedded resected tumor samples from patients with TNM stage II/III GC and established a proteomic subtyping workflow using 100 deep-learned features. Two proteomic subtypes (S-I and S-II) with overall survival differences were identified. S-I has a better survival rate and is sensitive to chemotherapy. Patients in the S-I who received adjuvant chemotherapy had a significant improvement in the 5-year overall survival rate compared with patients who received surgery alone (65.3% vs 52.6%; log-rank P = 0.014), but no improvement was observed in the S-II (54% vs 51%; log-rank P = 0.96). These results were verified in an independent validation set. Furthermore, we also evaluated the superiority and scalability of the deep learning-based workflow in cancer molecular subtyping, exhibiting its great utility and potential in prognosis prediction and therapeutic decision-making.</p

    Image_3_Deep Learning-Based Protein Features Predict Overall Survival and Chemotherapy Benefit in Gastric Cancer.jpeg

    No full text
    Gastric cancer (GC) is one of the most common malignant tumors with a high mortality rate worldwide and lacks effective methods for prognosis prediction. Postoperative adjuvant chemotherapy is the first-line treatment for advanced gastric cancer, but only a subgroup of patients benefits from it. Here, we used 833 formalin-fixed, paraffin-embedded resected tumor samples from patients with TNM stage II/III GC and established a proteomic subtyping workflow using 100 deep-learned features. Two proteomic subtypes (S-I and S-II) with overall survival differences were identified. S-I has a better survival rate and is sensitive to chemotherapy. Patients in the S-I who received adjuvant chemotherapy had a significant improvement in the 5-year overall survival rate compared with patients who received surgery alone (65.3% vs 52.6%; log-rank P = 0.014), but no improvement was observed in the S-II (54% vs 51%; log-rank P = 0.96). These results were verified in an independent validation set. Furthermore, we also evaluated the superiority and scalability of the deep learning-based workflow in cancer molecular subtyping, exhibiting its great utility and potential in prognosis prediction and therapeutic decision-making.</p

    Image_2_Deep Learning-Based Protein Features Predict Overall Survival and Chemotherapy Benefit in Gastric Cancer.jpeg

    No full text
    Gastric cancer (GC) is one of the most common malignant tumors with a high mortality rate worldwide and lacks effective methods for prognosis prediction. Postoperative adjuvant chemotherapy is the first-line treatment for advanced gastric cancer, but only a subgroup of patients benefits from it. Here, we used 833 formalin-fixed, paraffin-embedded resected tumor samples from patients with TNM stage II/III GC and established a proteomic subtyping workflow using 100 deep-learned features. Two proteomic subtypes (S-I and S-II) with overall survival differences were identified. S-I has a better survival rate and is sensitive to chemotherapy. Patients in the S-I who received adjuvant chemotherapy had a significant improvement in the 5-year overall survival rate compared with patients who received surgery alone (65.3% vs 52.6%; log-rank P = 0.014), but no improvement was observed in the S-II (54% vs 51%; log-rank P = 0.96). These results were verified in an independent validation set. Furthermore, we also evaluated the superiority and scalability of the deep learning-based workflow in cancer molecular subtyping, exhibiting its great utility and potential in prognosis prediction and therapeutic decision-making.</p

    The Glomerulus Multiomics Analysis Provides Deeper Insights into Diabetic Nephropathy

    No full text
    Although diabetic nephropathy (DN) is the leading cause of the end-stage renal disease, the exact regulation mechanisms remain unknown. In this study, we integrated the transcriptomics and proteomics profiles of glomeruli isolated from 50 biopsy-proven DN patients and 25 controls to investigate the latest findings about DN pathogenesis. First, 1152 genes exhibited differential expression at the mRNA or protein level, and 364 showed significant association. These strong correlated genes were divided into four different functional modules. Moreover, a regulatory network of the transcription factors (TFs)–target genes (TGs) was constructed, with 30 TFs upregulated at the protein levels and 265 downstream TGs differentially expressed at the mRNA levels. These TFs are the integration centers of several signal transduction pathways and have tremendous therapeutic potential for regulating the aberrant production of TGs and the pathological process of DN. Furthermore, 29 new DN-specific splice-junction peptides were discovered with high confidence; these peptides may play novel functions in the pathological course of DN. So, our in-depth integrative transcriptomics-proteomics analysis provided deeper insights into the pathogenesis of DN and opened the potential avenue for finding new therapeutic interventions. MS raw files were deposited into the proteomeXchange with the dataset identifier PXD040617

    The Glomerulus Multiomics Analysis Provides Deeper Insights into Diabetic Nephropathy

    No full text
    Although diabetic nephropathy (DN) is the leading cause of the end-stage renal disease, the exact regulation mechanisms remain unknown. In this study, we integrated the transcriptomics and proteomics profiles of glomeruli isolated from 50 biopsy-proven DN patients and 25 controls to investigate the latest findings about DN pathogenesis. First, 1152 genes exhibited differential expression at the mRNA or protein level, and 364 showed significant association. These strong correlated genes were divided into four different functional modules. Moreover, a regulatory network of the transcription factors (TFs)–target genes (TGs) was constructed, with 30 TFs upregulated at the protein levels and 265 downstream TGs differentially expressed at the mRNA levels. These TFs are the integration centers of several signal transduction pathways and have tremendous therapeutic potential for regulating the aberrant production of TGs and the pathological process of DN. Furthermore, 29 new DN-specific splice-junction peptides were discovered with high confidence; these peptides may play novel functions in the pathological course of DN. So, our in-depth integrative transcriptomics-proteomics analysis provided deeper insights into the pathogenesis of DN and opened the potential avenue for finding new therapeutic interventions. MS raw files were deposited into the proteomeXchange with the dataset identifier PXD040617

    The Glomerulus Multiomics Analysis Provides Deeper Insights into Diabetic Nephropathy

    No full text
    Although diabetic nephropathy (DN) is the leading cause of the end-stage renal disease, the exact regulation mechanisms remain unknown. In this study, we integrated the transcriptomics and proteomics profiles of glomeruli isolated from 50 biopsy-proven DN patients and 25 controls to investigate the latest findings about DN pathogenesis. First, 1152 genes exhibited differential expression at the mRNA or protein level, and 364 showed significant association. These strong correlated genes were divided into four different functional modules. Moreover, a regulatory network of the transcription factors (TFs)–target genes (TGs) was constructed, with 30 TFs upregulated at the protein levels and 265 downstream TGs differentially expressed at the mRNA levels. These TFs are the integration centers of several signal transduction pathways and have tremendous therapeutic potential for regulating the aberrant production of TGs and the pathological process of DN. Furthermore, 29 new DN-specific splice-junction peptides were discovered with high confidence; these peptides may play novel functions in the pathological course of DN. So, our in-depth integrative transcriptomics-proteomics analysis provided deeper insights into the pathogenesis of DN and opened the potential avenue for finding new therapeutic interventions. MS raw files were deposited into the proteomeXchange with the dataset identifier PXD040617

    The Glomerulus Multiomics Analysis Provides Deeper Insights into Diabetic Nephropathy

    No full text
    Although diabetic nephropathy (DN) is the leading cause of the end-stage renal disease, the exact regulation mechanisms remain unknown. In this study, we integrated the transcriptomics and proteomics profiles of glomeruli isolated from 50 biopsy-proven DN patients and 25 controls to investigate the latest findings about DN pathogenesis. First, 1152 genes exhibited differential expression at the mRNA or protein level, and 364 showed significant association. These strong correlated genes were divided into four different functional modules. Moreover, a regulatory network of the transcription factors (TFs)–target genes (TGs) was constructed, with 30 TFs upregulated at the protein levels and 265 downstream TGs differentially expressed at the mRNA levels. These TFs are the integration centers of several signal transduction pathways and have tremendous therapeutic potential for regulating the aberrant production of TGs and the pathological process of DN. Furthermore, 29 new DN-specific splice-junction peptides were discovered with high confidence; these peptides may play novel functions in the pathological course of DN. So, our in-depth integrative transcriptomics-proteomics analysis provided deeper insights into the pathogenesis of DN and opened the potential avenue for finding new therapeutic interventions. MS raw files were deposited into the proteomeXchange with the dataset identifier PXD040617

    Comparative Proteomic Analysis of Histone Modifications upon Acridone Derivative <b>8a</b>-Induced CCRF-CEM Cells by Data Independent Acquisition

    No full text
    The lead compound acridone derivative 8a showed potent antiproliferative activity by inducing DNA damage through direct stacking with DNA bases and triggering ROS in CCRF-CEM cells. To define the chromatin alterations during DNA damage sensing and repair, a detailed quantitative map of single and coexisting histone post-translational modifications (PTMs) in CCRF-CEM cells affected by 8a was performed by the Data Independent Acquisition (DIA) method on QE-plus. A total of 79 distinct and 164 coexisting histone PTMs were quantified, of which 16 distinct histone PTMs were significantly altered when comparing 8a-treated cells with vehicle control cells. The changes in histone PTMs were confirmed by Western blotting analysis for three H3 and one H4 histone markers. The up-regulated dimethylation on H3K9, H3K36, and H4K20 implied that CCRF-CEM cells might accelerate DNA damage repair to counteract the DNA lesion induced by 8a, which was verified by an increment in the 53BP1 foci localization at the damaged DNA. Most of the significantly altered PTMs were involved in transcriptional regulation, including down-regulated acetylation on H3K18, H3K27, and H3K122, and up-regulated di- and trimethylation on H3K9 and H3K27. This transcription-silencing phenomenon was associated with G2/M cell cycle arrest after 8a treatment by flow cytometry. This study shows that the DIA proteomics strategy provides a sensitive and accurate way to characterize the coexisting histone PTMs changes and their cross-talk in CCRF-CEM cells after 8a treatment. Specifically, histone PTMs rearrange transcription-silencing, and cell cycle arrest DNA damage repair may contribute to the mechanism of epigenetic response affected by 8a
    corecore