14 research outputs found

    Gas-Flow-Induced Reorientation to Centimeter-Sized Two-Dimensional Colloidal Single Crystal of Polystyrene Particle

    No full text
    Centimeter-sized two-dimensional (2D) colloidal single crystals of polystyrene (PS) particles were fabricated at the water/air interface by capillary-modulated self-assembly. Different from previous reports, in this work, emulsifier was used to facilitate the stress release during 2D colloidal crystal formation by adjusting the interparticle lateral interactions. With the assistance of compressed nitrogen flow, 2D hexagonal colloidal single crystals of centimeter size were obtained under appropriate emulsifier concentrations. A new method was also developed to transfer the 2D colloidal crystals from the air/water interface to the desired substrate without obvious disturbance. This new transferring method was proven not to be sensitive to surface wettability nor curvature, thus 2D colloidal single crystals with large areas could be obtained on different kinds of substrate

    One-Pot Synthesis of Highly Folded Microparticles by Suspension Polymerization

    No full text
    A facile method of preparing highly folded cross-linked polymeric microparticles has been developed via one-pot suspension polymerization under high-speed homogenization. The wrinkles result from the evaporation of solvent in the cross-linked microparticles. The effects of microparticle cross-linking density and solvent on the polymer have been studied in detail. It was found that a medium cross-linking density (DVB/St = 0.5 by weight) is optimal for producing the most folded surface and the higher the solvent content, the deeper the surface wrinkles. This method is very simple and in principle can be applied to produce wrinkled microparticles with other chemical compositions

    Small-Angle Neutron Scattering Study of Cyclic Poly(ethylene glycol) Adsorption on Colloidal Particles

    No full text
    The adsorptions of cyclic PEG and linear PEG on colloidal silica particles were compared. Their adsorption volume fraction profiles were generated through model fitting of small-angle neutron scattering data from the adsorbed polymer layers. The two important parameters to describe adsorbed polymer layers were discussed in detail. It was found that the adsorption amounts of cyclic PEGs increased with molecular weight but were generally higher than their linear counterparts. However, the root-mean-square layer thickness, δ<sub>rms</sub>, of adsorbed cyclic PEGs was found to decrease with molecular weight, opposing adsorbed linear PEGs and the theoretic prediction based on SF model. This disagreement was ascribed to the topological restriction of cyclic polymer at low molecular weight. An illustrated structural evolution with molecular weight for adsorbed polymer at interface was tentatively proposed based on the observations of this study

    Hollow Microsphere with Mesoporous Shell by Pickering Emulsion Polymerization as a Potential Colloidal Collector for Organic Contaminants in Water

    No full text
    Submicrometer hollow microspheres with mesoporous shells were prepared by a simple one-pot strategy. Colloidal silica particles were used as a particle stabilizer to emulsify the oil phase, which was composed of a polymerizable silicon monomer (TPM) and an inert organic solvent (PEA). The low interfacial tension between colloidal silica particles and TPM helped to form a Pickering emulsion with small droplet sizes. After the polymerization of TPM, the more hydrophobic PEA formed a liquid core, leading to a hollow structure after its removal by evaporation. BET results indicated that the shell of a hollow particle was mesoporous with a specific surface area over 400 m<sup>2</sup>·g<sup>–1</sup>. With PEA as the core and silica as the shell, each resultant hollow particle had a hydrophobic cavity and an amphiphilic surface, thus serving as a good colloidal collector for hydrophobic contaminants in water

    Facile Preparation Route toward Speckled Colloids via Seeded Polymerization

    No full text
    A facile method to prepare monodisperse speckled colloids has been developed via one-step seeded polymerization from noncross-linked latex particles. It was found that both cross-linking agents in the added monomer mixture and charged initiation species are essential for the formation of speckles on composite latex particle surface in seeded polymerization. The size and number density of speckles on the surface are tunable by adjusting the concentration of surfactant. A possible mechanism for the formation of such speckled colloids has been proposed based on a series of control experiments. Speckled colloidal particles were used as substrates for the adsorption of tobacco mosaic virus, and a much stronger adsorption was observed compared to smooth particles, implying a potential application of these speckled particles in virus collection and more

    Fabrication of Large-Sized Two-Dimensional Ordered Surface Array with Well-Controlled Structure via Colloidal Particle Lithography

    No full text
    Epoxy resin coated glass slides were used for colloidal particle lithography, in order to prepare well-defined 2D surface arrays. Upon the assistance of a large-sized 2D colloidal single crystal as template, centimeter-sized ordered surface arrays of bowl-like units were obtained. Systematic studies revealed that the parameters of obtained surface arrays could be readily controlled by some operational factors, such as temperature, epoxy resin layer thickness, and template particle size. With epoxy resin substituting for normal linear polymer, the height/diameter ratio of bowls in the formed surface arrays can be largely increased. With further reactive plasma etching, the parameters of ordered surface arrays could be finely tuned through controlling etching time. This study provides a facile way to prepare large-sized 2D surface arrays with tunable parameters

    Effect of Polyvinyl Alcohol on Ice Formation in the Presence of a Liquid/Solid Interface

    No full text
    Tuning ice formation is of great importance in biological systems and some technological applications. Many synthetic polymers have been shown to affect ice formation, in particular, polyvinyl alcohol (PVA). However, the experimental observations of the effect of PVA on ice formation are still conflicting. Here, we introduced colloidal silica (CS) as the model liquid/solid interface and studied the effect of PVA on ice formation in detail. The results showed that either PVA or CS promoted ice formation, whereas the mixture of these two (CS–PVA) prevented ice formation (antifreezing). Using quantitative analysis based on classical nucleation theory, we revealed that the main contribution came from the kinetic factor <i>J</i><sub>0</sub> rather than the energy barrier factor Γ. Combined with the PVA adsorption behavior on CS particles, it is strongly suggested that the adsorption of PVA at the interface has significantly reduced ice nucleation, which thus may provide new ideas for developing antifreezing agents

    Fabrication of a Composite Colloidal Particle with Unusual Janus Structure as a High-Performance Solid Emulsifier

    No full text
    Core–shell particles with cross-linked core and shell were used as seed particles to produce composite Janus particles. It was found that when the shell has distinctly higher cross-linking degree than the core, Janus particles with very unusual structures can be obtained. These particles have two parts, with one part embraced partially or entirely by the other part, adjustable by parameters such as phase ratio or cross-linking degree. On the basis of experimental observations, a possible mechanism for the formation of such unusual Janus particles has been proposed. Janus particles with arms are used to emulsify water–toluene mixtures, forming oil-in-water (O/W) emulsions at very high internal phase content with rather low concentration of particles. Nonspherical emulsion droplets were observed, indicating that these Janus particles are likely to jam at the interface, forming a strong protecting layer to stabilize emulsions

    Kinetics of Polymer Desorption from Colloids Probed by Aggregation-Induced Emission Fluorophore

    No full text
    Polymer adsorption and desorption are fundamental in many industrial and biomedical applications. Here, we introduce a new method to monitor the polymer desorption kinetics in situ based on the behavior of aggregation-induced emission. Poly­(ethylene oxide) and colloidal silica (SiO<sub>2</sub>) were used as a model system. It was found that the aggregation-induced emission method could be successfully used to determine the polymer desorption kinetics, and the polymer desorption followed the first-order kinetics. It was also found that the polymer desorption rate constant decreased with the increasing molecular weight, which could be described by a power law function <i>k</i><sub>d</sub> ≈ <i>M</i><sup>–0.28</sup>, close to that of the adsorption rate constant

    Construction of Injectable Double-Network Hydrogels for Cell Delivery

    No full text
    Herein we present a unique method of using dynamic cross-links, which are dynamic covalent bonding and ionic interaction, for the construction of injectable double-network (DN) hydrogels, with the objective of cell delivery for cartilage repair. Glycol chitosan and dibenzaldhyde capped poly­(ethylene oxide) formed the first network, while calcium alginate formed the second one, and in the resultant DN hydrogel, either of the networks could be selectively removed. The moduli of the DN hydrogel were significantly improved compared to that of the parent single-network hydrogels and were tunable by changing the chemical components. In situ 3D cell encapsulation could be easily performed by mixing cell suspension to the polymer solutions and transferred through a syringe needle before sol–gel transition. Cell proliferation and mediated differentiation of mouse chondrogenic cells were achieved in the DN hydrogel extracellular matrix
    corecore