564 research outputs found
Toward user oriented semantic geographical information systems
User Oriented Geographical Information Systems, a recent adaptation of classical GIS concepts to everyday usage, are becoming more and more present in the web landscape. Recent developments show the need of adding higher semantic levels to the existing frameworks, to improve their usage, as well as to ease scalability. We point out limits of actual examples, related to handling heterogeneous data, scalability issues, and expressiveness, and suggest a framework for building a Semantic User Oriented GIS. Notably this framework aims to address the peculiarities of the geographical space domain, and to offer a cognitively sound interface to the user
Towards general spatial intelligence
The goal of General Spatial Intelligence is to present a unified theory to support the various aspects of spatial experience, whether physical or cognitive. We acknowledge the fact that GIScience has to assume a particular worldview, resulting from specific positions regarding metaphysics, ontology, epistemology, mind, language, cognition and representation. Implicit positions regarding these domains may allow solutions to isolated problems but often hamper a more encompassing approach. We argue that explicitly defining a worldview allows the grounding and derivation of multi-modal models, establishing precise problems, allowing falsifiability. We present an example of such a theory founded on process metaphysics, where the ontological elements are called differences. We show that a worldview has implications regarding the nature of space and, in the case of the chosen metaphysical layer, favours a model of space as true spacetime, i.e. four-dimensionality. Finally we illustrate the approach using a scenario from psychology and AI based planning
Towards ontology interoperability through conceptual groundings
Abstract. The widespread use of ontologies raises the need to resolve heterogeneities between distinct conceptualisations in order to support interoperability. The aim of ontology mapping is, to establish formal relations between a set of knowledge entities which represent the same or a similar meaning in distinct ontologies. Whereas the symbolic approach of established SW representation standards – based on first-order logic and syllogistic reasoning – does not implicitly represent similarity relationships, the ontology mapping task strongly relies on identifying semantic similarities. However, while concept representations across distinct ontologies hardly equal another, manually or even semi-automatically identifying similarity relationships is costly. Conceptual Spaces (CS) enable the representation of concepts as vector spaces which implicitly carry similarity information. But CS provide neither an implicit representational mechanism nor a means to represent arbitrary relations between concepts or instances. In order to overcome these issues, we propose a hybrid knowledge representation approach which extends first-order logic ontologies with a conceptual grounding through a set of CS-based representations. Consequently, semantic similarity between instances – represented as members in CS – is indicated by means of distance metrics. Hence, automatic similarity-detection between instances across distinct ontologies is supported in order to facilitate ontology mapping
Teaching programming at a distance: the Internet software visualization laboratory
This paper describes recent developments in our approach to teaching computer programming in the context of a part-time Masters course taught at a distance. Within our course, students are sent a pack which contains integrated text, software and video course material, using a uniform graphical representation to tell a consistent story of how the programming language works. The students communicate with their tutors over the phone and through surface mail.
Through our empirical studies and experience teaching the course we have identified four current problems: (i) students' difficulty mapping between the graphical representations used in the course and the programs to which they relate, (ii) the lack of a conversational context for tutor help provided over the telephone, (iii) helping students who due to their other commitments tend to study at 'unsociable' hours, and (iv) providing software for the constantly changing and expanding range of platforms and operating systems used by students.
We hope to alleviate these problems through our Internet Software Visualization Laboratory (ISVL), which supports individual exploration, and both synchronous and asynchronous communication. As a single user, students are aided by the extra mappings provided between the graphical representations used in the course and their computer programs, overcoming the problems of the original notation. ISVL can also be used as a synchronous communication medium whereby one of the users (generally the tutor) can provide an annotated demonstration of a program and its execution, a far richer alternative to technical discussions over the telephone. Finally, ISVL can be used to support asynchronous communication, helping students who work at unsociable hours by allowing the tutor to prepare short educational movies for them to view when convenient. The ISVL environment runs on a conventional web browser and is therefore platform independent, has modest hardware and bandwidth requirements, and is easy to distribute and maintain. Our planned experiments with ISVL will allow us to investigate ways in which new technology can be most appropriately applied in the service of distance education
Semantically Annotating RESTful Services with SWEET
This paper presents SWEET: Semantic Web sErvices Editing Tool, the first tool developed for the semi-automatic acquisition of semantic RESTful service descriptions, aiming to support a higher level of automation of common RESTful service tasks, such as discovery and composition
The business process modelling ontology
In this paper we describe the Business Process Modelling Ontology (BPMO), which is part of an approach to modelling business processes at the semantic level, integrating knowledge about the organisational context, workflow activities and Semantic Web Services. We harness knowledge representation and reasoning techniques so that business process workflows can: be exposed and shared through semantic descriptions; refer to semantically annotated data and services; incorporate heterogeneous data though semantic mappings; and be queried using a reasoner or inference engine. In this paper we describe our approach and evaluate BPMO through a use case
Recommended from our members
Towards adaptive e-learning applications based on Semantic Web Services
The current state of the art in supporting E-Learning objectives is primarily based on providing a learner with learning content by using metadata standards like ADL SCORM 2004 or IMS Learning Design. By following this approach, several issues can be observed including high development costs due to a limited reusability across different standards and learning contexts. To overcome these issues, our approach changes this data-centric paradigm to a highly dynamic service-oriented approach. By following this approach, learning objectives are supported based on a automatic allocation of services instead of a manual composition of learning data. Our approach is fundamentally based on current Semantic Web Service (SWS) technology and considers mappings between different learning metadata standards as well as ontological concepts for E-Learning. Since our approach is based on a dynamic selection and invocation of SWS appropriate to achieve a given learning objective within a specific learning context, it enables the dynamic adaptation to specific learning needs as well as a high level of reusability across different learning contexts
Integrating web services into data intensive web sites
Designing web sites is a complex task. Ad-hoc rapid prototyping easily leads to unsatisfactory results, e.g. poor maintainability and extensibility. However, existing web design frameworks focus exclusively on data presentation: the development of specific functionalities is still achieved through low-level programming. In this paper we address this issue by describing our work on the integration of (semantic) web services into a web design framework, OntoWeaver. The resulting architecture, OntoWeaver-S, supports rapid prototyping of service centred data-intensive web sites, which allow access to remote web services. In particular, OntoWeaver-S is integrated with a comprehensive web service platform, IRS-II, for the specification, discovery, and execution of web services. Moreover, it employs a set of comprehensive site ontologies to model and represent all aspects of service-centred data-intensive web sites, and thus is able to offer high level support for the design and development process
Recommended from our members
The Irrefutable History of You: Distributed Ledgers and Semantics for Ubiquitous Personal Ratings
A recurring theme in the science-fiction series Black Mirror is the consequence for society of an over-focus on social networking. The episode Nosedive imagines a future in which every public interaction a person has is rated by the other parties, and every aspect of ones life depends on the overall rating computed from these. In this paper, we show how such a scenario is already technically possible using existing technologies such as distributed ledgers, and discuss means by which the negative possibilities may be ameliorated using semantic approaches
Ontology-based metrics computation for business process analysis
Business Process Management (BPM) aims to support the whole life-cycle necessary to deploy and maintain business processes in organisations. Crucial within the BPM lifecycle is the analysis of deployed processes. Analysing business processes requires computing metrics that can help determining the health of business activities and thus the whole enterprise. However, the degree of automation currently achieved cannot support the level of reactivity and adaptation demanded by businesses. In this paper we argue and show how the use of Semantic Web technologies can increase to an important extent the level of automation for analysing business processes. We present a domain-independent ontological framework for Business Process Analysis (BPA) with support for automatically computing metrics. In particular, we define a set of ontologies for specifying metrics. We describe a domain-independent metrics computation engine that can interpret and compute them. Finally we illustrate and evaluate our approach with a set of general purpose metrics
- …
