189 research outputs found
Semantic Grounding Strategies for Tagbased Recommender Systems
Recommender systems usually operate on similarities between recommended items
or users. Tag based recommender systems utilize similarities on tags. The tags
are however mostly free user entered phrases. Therefore, similarities computed
without their semantic groundings might lead to less relevant recommendations.
In this paper, we study a semantic grounding used for tag similarity calculus.
We show a comprehensive analysis of semantic grounding given by 20 ontologies
from different domains. The study besides other things reveals that currently
available OWL ontologies are very narrow and the percentage of the similarity
expansions is rather small. WordNet scores slightly better as it is broader but
not much as it does not support several semantic relationships. Furthermore,
the study reveals that even with such number of expansions, the recommendations
change considerably.Comment: 13 pages, 5 figure
Personalization and User Modelling for Distributed Learning and Collaboration in Professional Context
- …