538 research outputs found
The role(s) of NF-Y in development and differentiation
NF-Y is a conserved sequence-specific trimeric Transcription Factor -TF- binding to the CCAAT element. We review here the role(s) in development, from pre-implantation embryo to terminally differentiated tissues, by rationalizing and commenting on genetic, genomic, epigenetic and biochemical studies. This effort brings to light the impact of NF-YA isoforms on stemness and differentiation, as well as binding to distal vs promoter proximal sites and connections with selected TFs
Overexpression and alternative splicing of NF-YA in breast cancer
NF-Y is a CCAAT-binding trimeric transcription factor, whose regulome, interactome and oncogenic potential point to direct involvement in cellular transformation. Yet little is known about the levels of NF-Y subunits in tumors. We focused on breast carcinomas, and analyzed RNA-Seq datasets of TCGA and 54 BRCA cell lines at gene and isoforms level. We partitioned all tumors in the four major subclasses. NF-YA, but not histone-fold subunits NF-YB/NF-YC, is globally overexpressed, correlating with the proliferative Ki67 marker and a common set of 840 genes, with cell-cycle, metabolism GO terms. Their promoters are enriched in NF-Y, GC-rich and E2F sites. Surprisingly, there is an isoform switch, with the "short" isoform -NF-YAs- becoming predominant in tumors. E2F genes are also overexpressed in BRCA, but no switch in isoforms is observed. In Basal-like Claudinlow cell lines and tumors, expression of NF-YAl -long- isoform is high, together with 11 typical EMT markers and low levels of basal Keratins. Analysis of Progression-Free-Intervals indicates that tumors with unbalance of NF-YA isoforms ratios have worst clinical outcomes. The data suggest that NF-YA overexpression increases CCAAT-dependent, pro-growth genes in BRCA. NF-YAs is associated with a proliferative signature, but high levels of NF-YAl signal loss of epithelial features, EMT and acquisition of a more aggressive behavior in a subset of Claudinlow Basal-like tumors
An acetylation-mono-ubiquitination switch on lysine 120 of H2B.
Post-translational modifications (PTMs) of histones are crucial for transcriptional control, defining positive and negative chromatin territories. A switch of opposing functional significance between acetylation and methylation occurs on many residues. Lysine 120 of H2B is modified by two PTMs: ubiquitination, which is required for further trans-tail H3 methylations and elongation, and acetylation, whose role is less clear. ChIP-Seq with MNase I-treated chromatin indicates that H2BK120ac is present on nucleosomes immediately surrounding the TSS of transcribed or poised units, but not in core promoters. In kinetic ChIP analysis of ER-stress inducible genes, H2BK120ac precedes activation and H2B-ub deposition. Using in vitro acetylation assays, pharmacologic inhibition and RNAi, we established that KAT3 is responsible for H2BK120ac. Interestingly, the global levels of H2B-ub decreased in KAT3-inactivated cells. However, RNF20 recruitment was not impaired by KAT3-inactivation. Our data point at acetylation of Lysine 120 of H2B as an early mark of poised or active state and establish a temporal sequence between acetylation and mono-ubiquitination of this H2B residue
Relativistic effects and two-body currents in using out-of-plane detection
Measurements of the reaction were performed
using an 800-MeV polarized electron beam at the MIT-Bates Linear Accelerator
and with the out-of-plane magnetic spectrometers (OOPS). The
longitudinal-transverse, and , and the
transverse-transverse, , interference responses at a missing momentum
of 210 MeV/c were simultaneously extracted in the dip region at Q=0.15
(GeV/c). On comparison to models of deuteron electrodisintegration, the
data clearly reveal strong effects of relativity and final-state interactions,
and the importance of the two-body meson-exchange currents and isobar
configurations. We demonstrate that these effects can be disentangled and
studied by extracting the interference response functions using the novel
out-of-plane technique.Comment: 4 pages, 4 figures, and submitted to PRL for publicatio
WARP: a WIMP double phase Argon detector
The WARP programme for dark matter search with a double phase argon detector
is presented. In such a detector both excitation and ionization produced by an
impinging particle are evaluated by the contemporary measurement of primary
scintillation and secondary (proportional) light signal, this latter being
produced by extracting and accelerating ionization electrons in the gas phase.
The proposed technique, verified on a 2.3 liters prototype, could be used to
efficiently discriminate nuclear recoils, induced by WIMP's interactions, and
measure their energy spectrum. An overview of the 2.3 liters results and of the
proposed 100 liters detector is shown.Comment: Proceeding for IDM200
A Measurement of the Interference Structure Function, R_LT, for the 12C(e,e'p) reaction in the Quasielastic Region
The coincidence cross-section and the interference structure function, R_LT,
were measured for the 12C(e,e'p) 11B reaction at quasielastic kinematics and
central momentum transfer of q=400 MeV/c. The measurement was at an opening
angle of theta_pq=11 degrees, covering a range in missing energy of E_m = 0 to
65 MeV. The R_LT structure function is found to be consistent with zero for E_m
> 50 MeV, confirming an earlier study which indicated that R_L vanishes in this
region. The integrated strengths of the p- and s-shell are compared with a
Distorted Wave Impulse Approximation calculation. The s-shell strength and
shape are compared with a Hartree Fock-Random Phase Approximation calculation.
The DWIA calculation overestimates the cross sections for p- and s-shell proton
knockout as expected, but surprisingly agrees with the extracted R_LT value for
both shells. The HF-RPA calculation describes the data more consistently, which
may be due to the inclusion of 2-body currents in this calculation.Comment: 8 Pages LaTex, 5 postscript figures. Submitted to Phys. Rev.
The Switch from NF-YAl to NF-YAs Isoform Impairs Myotubes Formation
NF-YA, the regulatory subunit of the trimeric transcription factor (TF) NF-Y, is regulated by alternative splicing (AS) generating two major isoforms, "long" (NF-YAl) and "short" (NF-YAs). Muscle cells express NF-YAl. We ablated exon 3 in mouse C2C12 cells by a four-guide CRISPR/Cas9n strategy, obtaining clones expressing exclusively NF-YAs (C2-YAl-KO). C2-YAl-KO cells grow normally, but are unable to differentiate. Myogenin and-to a lesser extent, MyoD- levels are substantially lower in C2-YAl-KO, before and after differentiation. Expression of the fusogenic Myomaker and Myomixer genes, crucial for the early phases of the process, is not induced. Myomaker and Myomixer promoters are bound by MyoD and Myogenin, and Myogenin overexpression induces their expression in C2-YAl-KO. NF-Y inactivation reduces MyoD and Myogenin, but not directly: the Myogenin promoter is CCAAT-less, and the canonical CCAAT of the MyoD promoter is not bound by NF-Y in vivo. We propose that NF-YAl, but not NF-YAs, maintains muscle commitment by indirectly regulating Myogenin and MyoD expression in C2C12 cells. These experiments are the first genetic evidence that the two NF-YA isoforms have functionally distinct roles
Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector
Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged
particle imaging capability with remarkable spatial resolution. Precise event
reconstruction procedures are critical in order to fully exploit the potential
of this technology. In this paper we present a new, general approach of
three-dimensional reconstruction for the LAr TPC with a practical application
to track reconstruction. The efficiency of the method is evaluated on a sample
of simulated tracks. We present also the application of the method to the
analysis of real data tracks collected during the ICARUS T600 detector
operation with the CNGS neutrino beam.Comment: Submitted to Advances in High Energy Physic
Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium
We report on a first measurement of tensor analyzing powers in quasi-elastic
electron-deuteron scattering at an average three-momentum transfer of 1.7
fm. Data sensitive to the spin-dependent nucleon density in the deuteron
were obtained for missing momenta up to 150 MeV/ with a tensor polarized
H target internal to an electron storage ring. The data are well described
by a calculation that includes the effects of final-state interaction,
meson-exchange and isobar currents, and leading-order relativistic
contributions.Comment: 4 pages, 3 figure
- …