214 research outputs found
Upper limits on stray force noise for LISA
We have developed a torsion pendulum facility for LISA gravitational
reference sensor ground testing that allows us to put significant upper limits
on residual stray forces exerted by LISA-like position sensors on a
representative test mass and to characterize specific sources of disturbances
for LISA. We present here the details of the facility, the experimental
procedures used to maximize its sensitivity, and the techniques used to
characterize the pendulum itself that allowed us to reach a torque sensitivity
below 20 fNm /sqrt{Hz} from 0.3 to 10 mHz. We also discuss the implications of
the obtained results for LISA.Comment: To be published in Classical and Quantum Gravity, special issue on
Amaldi5 2003 conference proceedings (10 pages, 6 figures
Characterization of disturbance sources for LISA: torsion pendulum results
A torsion pendulum allows ground-based investigation of the purity of
free-fall for the LISA test masses inside their capacitive position sensor.
This paper presents recent improvements in our torsion pendulum facility that
have both increased the pendulum sensitivity and allowed detailed
characterization of several important sources of acceleration noise for the
LISA test masses. We discuss here an improved upper limit on random force noise
originating in the sensor. Additionally, we present new measurement techniques
and preliminary results for characterizing the forces caused by the sensor's
residual electrostatic fields, dielectric losses, residual spring-like
coupling, and temperature gradients.Comment: 11 pages, 8 figures, accepted for publication Classical and Quantum
Gravit
Torsion pendulum facility for direct force measurements of LISA GRS related disturbances
A four mass torsion pendulum facility for testing of the LISA GRS is under
development in Trento. With a LISA-like test mass suspended off-axis with
respect to the pendulum fiber, the facility allows for a direct measurement of
surface force disturbances arising in the GRS. We present here results with a
prototype pendulum integrated with very large-gap sensors, which allows an
estimate of the intrinsic pendulum noise floor in the absence of sensor related
force noise. The apparatus has shown a torque noise near to its mechanical
thermal noise limit, and would allow to place upper limits on GRS related
disturbances with a best sensitivity of 300 fN/Hz^(1/2) at 1mHz, a factor 50
from the LISA goal. Also, we discuss the characterization of the gravity
gradient noise, one environmental noise source that could limit the apparatus
performances, and report on the status of development of the facility.Comment: Submitted to Proceedings of the 6th International LISA Symposium, AIP
Conference Proceedings 200
Improved Torsion Pendulum for Ground Testing of LISA Displacement Sensors
We discuss a new torsion pendulum design for ground testing of prototype LISA
(Laser Interferometer Space Antenna) displacement sensors. This new design is
directly sensitive to net forces and therefore provides a more representative
test of the noisy forces and parasitic stiffnesses acting on the test mass as
compared to previous ground-based experiments. We also discuss a specific
application to the measurement of thermal gradient effects.Comment: 4 pages 1 figure, to appear in the Proceedings of the 10th Marcel
Grossmann Meeting on General Relativit
Achieving geodetic motion for LISA test masses: ground testing result
The low-frequency resolution of space-based gravitational wave observatories
such as LISA (Laser Interferometry Space Antenna) hinges on the orbital purity
of a free-falling reference test mass inside a satellite shield. We present
here a torsion pendulum study of the forces that will disturb an orbiting test
mass inside a LISA capacitive position sensor. The pendulum, with a measured
torque noise floor below 10 fNm/sqrt{Hz} from 0.6 to 10 mHz, has allowed
placement of an upper limit on sensor force noise contributions, measurement of
the sensor electrostatic stiffness at the 5% level, and detection and
compensation of stray DC electrostatic biases at the mV level.Comment: 4 pages (revtex4) with 4 figure
Measuring random force noise for LISA aboard the LISA Pathfinder mission
The LTP (LISA Testflight Package), to be flown aboard the ESA / NASA LISA
Pathfinder mission, aims to demonstrate drag-free control for LISA test masses
with acceleration noise below 30 fm/s^2/Hz^1/2 from 1-30 mHz. This paper
describes the LTP measurement of random, position independent forces acting on
the test masses. In addition to putting an overall upper limit for all source
of random force noise, LTP will measure the conversion of several key
disturbances into acceleration noise and thus allow a more detailed
characterization of the drag-free performance to be expected for LISA.Comment: 7 pages, 3 figures. To be published in Classical and Quantum Gravity
with the proceedings of the 2003 Amaldi Meetin
Possibilities for Measurement and Compensation of Stray DC Electric Fields Acting on Drag-Free Test Masses
DC electric fields can combine with test mass charging and thermal dielectric
voltage noise to create significant force noise acting on the drag-free test
masses in the LISA (Laser Interferometer Space Antenna) gravitational wave
mission. This paper proposes a simple technique to measure and compensate
average stray DC potentials at the mV level, yielding substantial reduction in
this source of force noise. We discuss the attainable resolution for both
flight and ground based experiments.Comment: To be published in Advances in Space Research, COSPAR 2002 conference
proceedings (6 pages, 3 figures
The interaction between stray electrostatic fields and a charged free-falling test mass
We present an experimental analysis of force noise caused by stray
electrostatic fields acting on a charged test mass inside a conducting
enclosure, a key problem for precise gravitational experiments. Measurement of
the average field that couples to test mass charge, and its fluctuations, is
performed with two independent torsion pendulum techniques, including direct
measurement of the forces caused by a change in electrostatic charge. We
analyze the problem with an improved electrostatic model that, coupled with the
experimental data, also indicates how to correctly measure and null the stray
field that interacts with test mass charge. Our measurements allow a
conservative upper limit on acceleration noise, of 2 fm/s\rthz\ for
frequencies above 0.1 mHz, for the interaction between stray fields and charge
in the LISA gravitational wave mission.Comment: Minor edits in PRL publication proces
Measuring the LISA test mass magnetic proprieties with a torsion pendulum
Achieving the low frequency LISA sensitivity requires that the test masses
acting as the interferometer end mirrors are free-falling with an unprecedented
small degree of deviation. Magnetic disturbances, originating in the
interaction of the test mass with the environmental magnetic field, can
significantly deteriorate the LISA performance and can be parameterized through
the test mass remnant dipole moment and the magnetic susceptibility
. While the LISA test flight precursor LTP will investigate these effects
during the preliminary phases of the mission, the very stringent requirements
on the test mass magnetic cleanliness make ground-based characterization of its
magnetic proprieties paramount. We propose a torsion pendulum technique to
accurately measure on ground the magnetic proprieties of the LISA/LTP test
masses.Comment: 6 pages, 3 figure
Thermal gradient-induced forces on geodetic reference masses for LISA
The low frequency sensitivity of space-borne gravitational wave observatories
will depend critically on the geodetic purity of the trajectories of orbiting
test masses. Fluctuations in the temperature difference across the enclosure
surrounding the free-falling test mass can produce noisy forces through several
processes, including the radiometric effect, radiation pressure, and
outgassing. We present here a detailed experimental investigation of thermal
gradient-induced forces for the LISA gravitational wave mission and the LISA
Pathfinder, employing high resolution torsion pendulum measurements of the
torque on a LISA-like test mass suspended inside a prototype of the LISA
gravitational reference sensor that will surround the test mass in orbit. The
measurement campaign, accompanied by numerical simulations of the radiometric
and radiation pressure effects, allows a more accurate and representative
characterization of thermal-gradient forces in the specific geometry and
environment relevant to LISA free-fall. The pressure dependence of the measured
torques allows clear identification of the radiometric effect, in quantitative
agreement with the model developed. In the limit of zero gas pressure, the
measurements are most likely dominated by outgassing, but at a low level that
does not threaten the LISA sensitivity goals.Comment: 21 pages, 16 figures, submitted to Physical Review
- …