12 research outputs found

    TESTING OF THE PARIS LaBr3-NaI PHOSWICH DETECTOR WITH HIGH ENERGY GAMMA-RAYS

    No full text
    47th Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape -- AUG 27-SEP 02, 2012 -- Zakopane, POLANDWOS: 000317703400059We report on tests of LaBr3:Ce NaI:Tl phoswich detectors with gamma-rays at various gamma-ray energies, up to 22.56 MeV, using radioactive sources and nuclear reactions induced by proton beams delivered by accelerators at IFJ PAN Krakow and PLF Mumbai. Two-dimensional analysis of complex waveforms recorded with digital electronics is compared to analog discrimination methods. Both approaches allow to resolve the LaBr3:Ce and NaI:Tl signal components, and to construct clean associated gamma-ray spectra. A digital algorithm to be implemented for the PARIS scintillator array is investigated. D OI: 10.5506/APhysPolB.44.651Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Jagiellonian Univ, Marian Smoluchowski Inst Phys, Polish Acad Sci, Comm PhysScience and Technology Facilities Council [ST/J000051/1

    Total neutron cross-section measurement on CH with a novel 3D-projection scintillator detector

    No full text
    In order to extract neutrino oscillation parameters, long-baseline neutrino oscillation experiments rely on detailed models of neutrino interactions with nuclei. These models constitute an important source of systematic uncertainty, partially because detectors to date have been blind to final state neutrons. Three-dimensional projection scintillator trackers comprise components of the near detectors of the next generation long-baseline neutrino experiments. Due to the good timing resolution and fine granularity, this technology is capable of measuring neutron kinetic energy in neutrino interactions on an event-by-event basis and will provide valuable data for refining neutrino interaction models and ways to reconstruct neutrino energy. Two prototypes have been exposed to the neutron beamline at Los Alamos National Laboratory (LANL) in both 2019 and 2020, with neutron energies between 0 and 800 MeV. In order to demonstrate the capability of neutron detection, the total neutron-scintillator cross section as a function of neutron energy is measured and compared to external measurements. The measured total neutron cross section in scintillator between 98 and 688 MeV is 0.36 ± 0.05 barn.ISSN:0370-2693ISSN:0031-9163ISSN:1873-244

    Testing of the PARIS LaBr3-NaI phowich detector with high energy gamma-rays

    No full text
    International audienceWe report on tests of LaBr3:Ce-NaI:Tl phoswich detectors with Îł\gamma-rays at various Îł\gamma-ray energies, up to 22.56 MeV, using radioactive sources and nuclear reactions induced by proton beams delivered by accelerators at IFJ PAN KrakĂłw and PLF Mumbai. Two-dimensional analysis of complex waveforms recorded with digital electronics is compared to analog discrimination methods. Both approaches allow to resolve the LaBr3:Ce and NaI:Tl signal components, and to construct clean associated Îł\gamma-ray spectra. A digital algorithm to be implemented for the PARIS scintillator array is investigated

    Total Neutron Cross-Section Measurement on CH with a Novel 3D-Projection Scintillator Detector

    No full text
    Long-baseline neutrino oscillation experiments rely on detailed models of neutrino interactions on nuclei. These models constitute an important source of systematic uncertainty, partially because detectors to date have been unable to detect final state neutrons. A novel three-dimensional projection scintillator tracker will be a component of the upgraded off-axis near detector of the T2K experiment. Due to the good timing resolution and fine granularity, this technology is capable of measuring neutron kinematics in neutrino interactions on an event-by-event basis and will provide valuable data for refining neutrino interaction models. A prototype is exposed to the neutron beamline at Los Alamos National Laboratory with neutron energies between 0 and 800 MeV. In order to demonstrate the capability to measure neutron kinematics, the total neutron–scintillator cross section as a function of the neutron kinetic energy is measured

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE

    No full text
    International audienceThe preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics

    No full text
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume II of this TDR, DUNE Physics, describes the array of identified scientific opportunities and key goals. Crucially, we also report our best current understanding of the capability of DUNE to realize these goals, along with the detailed arguments and investigations on which this understanding is based. This TDR volume documents the scientific basis underlying the conception and design of the LBNF/DUNE experimental configurations. As a result, the description of DUNE's experimental capabilities constitutes the bulk of the document. Key linkages between requirements for successful execution of the physics program and primary specifications of the experimental configurations are drawn and summarized. This document also serves a wider purpose as a statement on the scientific potential of DUNE as a central component within a global program of frontier theoretical and experimental particle physics research. Thus, the presentation also aims to serve as a resource for the particle physics community at large
    corecore