75 research outputs found

    Quadratische Netze, Fehlstellen und Modulationen - Strukturchemie von Polyseleniden und Selenidditelluriden der Lanthanoidmetalle

    Get PDF
    In der vorliegenden Arbeit wurden Verbindungen untersucht, die regulĂ€re oder verzerrte planar-quadratische Chalkogenschichten als ein wesentliches Strukturelement enthalten. Neben der Darstellung neuer Verbindungen und der Identifizierung des Phasenbestandes in den binĂ€ren Zustandsdiagrammen Ln – Se lag das Hauptaugenmerk der Untersuchungen auf der AufklĂ€rung der z. T. komplexen Überstrukturen und deren kristallchemischen Einordnung sowie auf den elektronischen Eigenschaften der Verbindungen. Methodisch kamen zur Strukturlösung und -beschreibung dabei sowohl Röntgen- und Elektronenbeugung, als auch hochauflösende Transmissionselektronenmikroskopie und Elektronenholographie zum Einsatz. Bei Strukturverfeinerungen der kommensurabel und inkommensurabel modulierten Strukturen wurde in vielen FĂ€llen das Superraumkonzept angewandt, das eine einheitlichere Beschreibung verwandter Strukturen in höherdimensionalen Superraumgruppen ermöglicht. Im einzelnen wurden die Polyselenide PrSe2 und NdSe2 (beide kristallisieren im CeSe2-Typ) und SmSe1.9 (CeSe1.9-Typ) sowie die selenĂ€rmeren Verbindungen Ln8Se15 mit Ln = Y, Gd, Tb, Dy, Ho und Er (alle: Gd8Se15-Typ) hergestellt und erstmals strukturell charakterisiert. Diese Verbindungen kristallisieren als kommensurable Überstrukturen eines hochsymmetrischen Aristotyps, des ZrSSi-Typs. Die ebenfalls neu aufgefundenen Selenide Nd0.6Gd0.4Se1.85 und PrSe1.85 bilden dagegen inkommensurabel modulierte Strukturen aus und werden mit Hilfe des Superraumformalismus beschrieben. Die untersuchten Polyselenide weisen halbleitendes Verhalten auf und enthalten dreiwertige Lanthanoidmetalle. Die ebenfalls neu aufgefundenen Substanzklasse der Lanthanoidselenidditelluride LnSeTe2 (Ln = La, Ce, Pr, Nd, Sm) sind als ternĂ€re Ordnungsvarianten des NdTe3-Typs zu beschreiben. Die Verbindungen LaSeTe2, CeSeTe2, PrSeTe2 und NdSeTe2 durchlaufen reversible, temperaturabhĂ€ngige Phasentransformationen von einer nicht modulierten Hochtemperaturphase in eine inkommensurabel modulierte Tieftemperaturphase, die mit einem Metall-Halbmetall-Übergang korreliert

    Bioactive SrO-SiO2 glass with well-ordered mesopores: Characterization, physiochemistry and biological properties

    Get PDF
    For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO2 glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO2 in an effort to develop a bioactive mesoporous SrO–SiO2 (Sr–Si) glass with the capacity to deliver Sr2+ ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr2+ on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr–Si glass were investigated. The prepared mesoporous Sr–Si glass was found to have an excellent release profile of bioactive Sr2+ ions and dexamethasone, and the incorporation of Sr2+ improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr–Si glass had no cytotoxic effects and its release of Sr2+ and SiO44− ions enhanced alkaline phosphatase activity – a marker of osteogenic cell differentiation – in human bone mesenchymal stem cells. Mesoporous Sr–Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr2+ into mesoporous SiO2 glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Keywords: Mesoporous Sr–Si glass; Drug delivery; Bioactivity; Bone repair; Scaffold

    Electron Spin Resonance on the spin-1/2 triangular magnet NaYbS2

    Full text link
    The delafossite structure of NaYbS2 contains a planar spin-1/2 triangular lattice of Yb3+ ions and features a possible realisation of a quantum spin-liquid state. We investigated the Yb3+ spin dynamics by Electron Spin Resonance (ESR) in single-crystalline samples of NaYbS2. Very clear spectra with a well-resolved and large anisotropy could be observed down to the lowest accessible temperature of 2.7 K. In contrast to the ESR properties of other known spin-liquid candidate systems, the resonance seen in NaYbS2 is accessible at low fields (< 1T) and is narrow enough for accurate characterisation of the relaxation rate as well as the g factor of the Yb3+ spins.Comment: 8 page

    Electron spin resonance study on the 4f honeycomb quantum magnet YbCl3

    Full text link
    The local magnetic properties of Yb3+^{3+} in the layered honeycomb material YbCl3_{3} were investigated by electron spin resonance on single crystals. For in-plane and out-of-plane field orientations the gg-factor shows a clear anisotropy (g∄=2.97(8)g_\|=2.97(8) and g⊄=1.53(4)g_\bot =1.53(4)), whereas the low temperature exchange coupling and the spin relaxation display a rather isotropic character. At elevated temperatures the contribution of the first excited crystal field level (21±221\pm2~meV) dominates the spin relaxation.Comment: 10 pages, 5 figure

    Pressure-tuning of α\alpha-RuCl3_3 towards the ideal Kitaev-limit

    Full text link
    We report the discovery of an intriguing pressure-driven phase transformation in the layered Kitaev-material α\alpha-RuCl3_3. By analyzing both the Bragg scattering as well as the diffuse scattering of high-quality single crystals, we reveal a collective reorganization of the layer stacking throughout the crystal. Importantly, this transformation also effects the structure of the RuCl3_3 honeycomb layers, which acquire a high trigonal symmetry with a single Ru--Ru distance of 3.41\r{A} and a single Ru--Cl--Ru bond angle of 92.8{\deg}. Hydrostatic pressure therefore allows to tune the structure of α\alpha-RuCl3_3 much closer to the ideal Kitaev-limit. The high-symmetry phase can also be stabilized by biaxial stress, which can explain conflicting results reported earlier and, more importantly, makes the high-symmetry phase accessible to a variety of experiments

    Anion-driven tetrel bond-induced engineering of lead(II) architectures with Nâ€Č-(1-(2-pyridyl)ethylidene)nicotinohydrazide : experimental and theoretical findings

    Get PDF
    The evaluation of Nâ€Č-(1-(2-pyridyl)ethylidene)nicotinohydrazide (HL) as a linker for the PbII tagged extended structures is described. The reaction of Pb(ClO4)2 or Pb(OAc)2 with HL in MeOH at 60 °C and room temperature, respectively, leads to heteroleptic complexes {[PbL]ClO4}n·nH2O and [PbL(OAc)]2, while the same reaction of Pb(ClO4)2 with HL at 60 °C in the presence of two equivalents of NaOAc or NaNO2 leads to heteroleptic complexes {[Pb(HL)(OAc)]ClO4}n and [PbL(NO2)]n, respectively. Using Pb(NO3)2 as a source of PbII in the same reaction with HL and two equivalents of NaN3 or NaNCS at room temperature yields [PbLN3]n and [Pb2(HL)2(NO3)2(NCS)2], respectively. The room temperature reaction of Pb(NO3)2 with HL in the presence of two equivalents of NaClO4 leads to the transformation of the parent ligand to its perchlorate salt [H2L]ClO4. In all the obtained PbII structures, HL or its deprotonated form L acts both as a chelating and a bridging ligand. The nature of the inorganic anion also influences the final structure. In all complexes the PbII center exhibits a hemidirected coordination geometry with all the covalent bonds being concentrated on one hemisphere of the coordination sphere with the closest approach of two atoms on the other side varying from 151° to 232°. The sterically available PbII ion participates in tetrel bonding as evidenced from the detailed structural analysis of the described complexes. As a result of tetrel bonding, the structures of all the six compounds can be extended to a higher dimensional framework, which is further stabilized by Ï€â‹ŻÏ€ stacking interactions between the aromatic rings. The DFT based charge and energy decomposition (ETS-NOCV) calculations are performed in order to shed light on the nature of non-covalent interactions that determine the stability of the obtained structures
    • 

    corecore