1,857 research outputs found
Hobson’s choice? Constraints on accessing spaces of creative production
Successful creative production is often documented to occur in urban areas that are more likely to be diverse, a source of human capital and the site of dense interactions. These accounts chart how, historically, creative industries have clustered in areas where space was once cheap in the city centre fringe and inner city areas, often leading to the development of a creative milieu, and thereby stimulating further creative production. Historical accounts of the development of creative areas demonstrate the crucial role of accessible low-cost business premises. This article reports on the findings of a case study that investigated the location decisions of firms in selected creative industry sectors in Greater Manchester. The study found that, while creative activity remains highly concentrated in the city centre, creative space there is being squeezed and some creative production is decentralizing in order to access cheaper premises. The article argues that the location choices of creative industry firms are being constrained by the extensive city centre regeneration, with the most vulnerable firms, notably the smallest and youngest, facing a Hobson’s choice of being able to access low-cost premises only in the periphery. This disrupts the delicate balance needed to sustain production and begs the broader question as to how the creative economy fits into the existing urban fabric, alongside the competing demands placed on space within a transforming industrial conurbation
Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector
The Project 8 collaboration seeks to measure the absolute neutrino mass scale
by means of precision spectroscopy of the beta decay of tritium. Our technique,
cyclotron radiation emission spectroscopy, measures the frequency of the
radiation emitted by electrons produced by decays in an ambient magnetic field.
Because the cyclotron frequency is inversely proportional to the electron's
Lorentz factor, this is also a measurement of the electron's energy. In order
to demonstrate the viability of this technique, we have assembled and
successfully operated a prototype system, which uses a rectangular waveguide to
collect the cyclotron radiation from internal conversion electrons emitted from
a gaseous Kr source. Here we present the main design aspects of the
first phase prototype, which was operated during parts of 2014 and 2015. We
will also discuss the procedures used to analyze these data, along with the
features which have been observed and the performance achieved to date.Comment: 3 pages; 2 figures; Proceedings of Neutrino 2016, XXVII International
Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U
Dead layer on silicon p-i-n diode charged-particle detectors
Semiconductor detectors in general have a dead layer at their surfaces that
is either a result of natural or induced passivation, or is formed during the
process of making a contact. Charged particles passing through this region
produce ionization that is incompletely collected and recorded, which leads to
departures from the ideal in both energy deposition and resolution. The silicon
\textit{p-i-n} diode used in the KATRIN neutrino-mass experiment has such a
dead layer. We have constructed a detailed Monte Carlo model for the passage of
electrons from vacuum into a silicon detector, and compared the measured energy
spectra to the predicted ones for a range of energies from 12 to 20 keV. The
comparison provides experimental evidence that a substantial fraction of the
ionization produced in the "dead" layer evidently escapes by diffusion, with
46% being collected in the depletion zone and the balance being neutralized at
the contact or by bulk recombination. The most elementary model of a thinner
dead layer from which no charge is collected is strongly disfavored.Comment: Manuscript submitted to NIM
Statistical Characterization of the Chandra Source Catalog
The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray
sources in a total area of ~0.75% of the entire sky, using data from ~3,900
separate ACIS observations of a multitude of different types of X-ray sources.
In order to maximize the scientific benefit of such a large, heterogeneous
data-set, careful characterization of the statistical properties of the
catalog, i.e., completeness, sensitivity, false source rate, and accuracy of
source properties, is required. Characterization efforts of other, large
Chandra catalogs, such as the ChaMP Point Source Catalog (Kim et al. 2007) or
the 2 Mega-second Deep Field Surveys (Alexander et al. 2003), while
informative, cannot serve this purpose, since the CSC analysis procedures are
significantly different and the range of allowable data is much less
restrictive. We describe here the characterization process for the CSC. This
process includes both a comparison of real CSC results with those of other,
deeper Chandra catalogs of the same targets and extensive simulations of
blank-sky and point source populations.Comment: To be published in the Astrophysical Journal Supplement Series (Fig.
52 replaced with a version which astro-ph can convert to PDF without issues.
Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments
The recently developed technique of Cyclotron Radiation Emission Spectroscopy
(CRES) uses frequency information from the cyclotron motion of an electron in a
magnetic bottle to infer its kinetic energy. Here we derive the expected radio
frequency signal from an electron in a waveguide CRES apparatus from first
principles. We demonstrate that the frequency-domain signal is rich in
information about the electron's kinematic parameters, and extract a set of
measurables that in a suitably designed system are sufficient for disentangling
the electron's kinetic energy from the rest of its kinematic features. This
lays the groundwork for high-resolution energy measurements in future CRES
experiments, such as the Project 8 neutrino mass measurement.Comment: 15 pages, 10 figure
Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity
The Sudbury Neutrino Observatory (SNO) has precisely determined the total
active (nu_x) 8B solar neutrino flux without assumptions about the energy
dependence of the nu_e survival probability. The measurements were made with
dissolved NaCl in the heavy water to enhance the sensitivity and signature for
neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/-
0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and
standard solar models. A global analysis of these and other solar and reactor
neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta
= 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of
5.4 standard deviations.Comment: Submitted to Phys. Rev. Let
A snapshot on galaxy evolution occurring in the Great Wall: the role of Nurture at z=0
With the aim of quantifying the contribution of the environment on the
evolution of galaxies at z=0 we have used the DR7 catalogue of the Sloan
Digital Sky Survey (SDSS) to reconstruct the 3-D distribution of 4132 galaxies
in 420 square degrees of the Coma supercluster, containing two rich clusters
(Coma and A1367), several groups, and many filamentary structures belonging to
the "Great Wall", at the approximate distance of 100 Mpc. At this distance the
galaxy census is complete to Mi=-17.5 mag, i.e. approx 4 mag fainter than M*.
The morphological classification of galaxies into early- (ellipticals) and
late-types (spirals) was carried out by inspection of individual SDSS images
and spectra. The density around each galaxies was determined in cylinders of 1
Mpc radius and 1000 km s^-1 half length. The color-luminosity relation was
derived for galaxies in bins morphological type and in four thresholds of
galaxy density-contrast, ranging from delta{1,1000} <= 0 (UL = the cosmic web);
0 < delta{1,1000} <= 4 (L = the loose groups); 4 < delta{1,1000} <= 20 (H = the
large groups and the cluster's outskirts) and delta{1,1000} > 20 (UH = the
cluster's cores). The fraction of early-type galaxies increases with the log of
the over-density. A well defined "red sequence" composed of early-type galaxies
exists in all environments at high luminosity, but it lacks of low luminosity
(dwarf) galaxies in the lowest density environment. Conversely low luminosity
isolated galaxies are predominantly of late-type. In other words the low
luminosity end of the distribution is dominated by red dE galaxies in clusters
and groups and by dwarf blue amorphous systems in the lowest density regions.
At z=0 we find evidence for strong evolution induced by the environment
(Nurture). Transformations take place mostly at low luminosity when star
forming dwarf galaxies inhabiting low density environments migrate into
amorphous passive dwarf ellipticals in their infall into denser regions. The
mechanism involves suppression of the star formation due to gas stripping,
without significant mass growth, as proposed by Boselli et al. (2008a). This
process is more efficient and fast in ambients of increasing density. In the
highest density environments (around clusters) the truncation of the star
formation happens fast enough (few 100 Myr) to produce the signature of
post-star-burst in galaxy spectra. PSB galaxies, that are in fact found
significantly clustered around the largest dynamical units, represent the
remnants of star forming isolated galaxies that had their star formation
violently suppressed during their infall in clusters in the last 0.5-1.5 Gyrs,
and the progenitors of future dEs.Comment: 14 pages, 14 figures, Astronomy and Astrophysics, in pres
The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay
The observation of neutrinoless double-beta decay would resolve the Majorana
nature of the neutrino and could provide information on the absolute scale of
the neutrino mass. The initial phase of the Majorana experiment, known as the
Demonstrator, will house 40 kg of Ge in an ultra-low background shielded
environment at the 4850' level of the Sanford Underground Laboratory in Lead,
SD. The objective of the Demonstrator is to determine whether a future 1-tonne
experiment can achieve a background goal of one count per tonne-year in a
narrow region of interest around the 76Ge neutrinoless double-beta decay peak.Comment: Presentation for the Rutherford Centennial Conference on Nuclear
Physic
The Chandra Source Catalog
The Chandra Source Catalog (CSC) is a general purpose virtual X-ray
astrophysics facility that provides access to a carefully selected set of
generally useful quantities for individual X-ray sources, and is designed to
satisfy the needs of a broad-based group of scientists, including those who may
be less familiar with astronomical data analysis in the X-ray regime. The first
release of the CSC includes information about 94,676 distinct X-ray sources
detected in a subset of public ACIS imaging observations from roughly the first
eight years of the Chandra mission. This release of the catalog includes point
and compact sources with observed spatial extents <~ 30''. The catalog (1)
provides access to the best estimates of the X-ray source properties for
detected sources, with good scientific fidelity, and directly supports
scientific analysis using the individual source data; (2) facilitates analysis
of a wide range of statistical properties for classes of X-ray sources; and (3)
provides efficient access to calibrated observational data and ancillary data
products for individual X-ray sources, so that users can perform detailed
further analysis using existing tools. The catalog includes real X-ray sources
detected with flux estimates that are at least 3 times their estimated 1 sigma
uncertainties in at least one energy band, while maintaining the number of
spurious sources at a level of <~ 1 false source per field for a 100 ks
observation. For each detected source, the CSC provides commonly tabulated
quantities, including source position, extent, multi-band fluxes, hardness
ratios, and variability statistics, derived from the observations in which the
source is detected. In addition to these traditional catalog elements, for each
X-ray source the CSC includes an extensive set of file-based data products that
can be manipulated interactively.Comment: To appear in The Astrophysical Journal Supplement Series, 53 pages,
27 figure
- …
